М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Пакета
Пакета
13.05.2021 19:51 •  Геометрия

Высота, проведённая к оснаванию равнобедренного треугольника, равна 7,6 см, а боковая сторона треугольника, равна 15,2 cм.найдите углы этого треугольника. решите !

👇
Ответ:
евген1398
евген1398
13.05.2021
ответ получится 30,30,120
Высота, проведённая к оснаванию равнобедренного треугольника, равна 7,6 см, а боковая сторона треуго
4,5(53 оценок)
Ответ:
Yanika159
Yanika159
13.05.2021
 Дано: треугольник ABC, AB=BC=15.2 см, BD - высота, BD=7,6 см
Найти: угол А, B, C
sinA=sinC=BD/AB=7.6/15.2=0.5
A=C=arcsin0.5=30
B=180-A-C=180-30-30=180-60=120
4,8(72 оценок)
Открыть все ответы
Ответ:
mandarinkamare007
mandarinkamare007
13.05.2021
АНАЛОГИЧНО ВОТ ЭТОЙ РЕШАЕТСЯ: Дано: ABCD - трапеция общего вида, AD - основание трапеции, M *не принадлежит (Перечеркнутая буква Э, в зеркальном отражении)* плоскости ABCD. Доказать: AD II BMC "Точку M можно расположить где угодно, лишь бы она не входила в плоскость ABCD, т.е. можно делать и не такой чертеж как у меня на рисунке." Доказательство: BC - общася сторона трапеции ABCD и треугольника BCM. В любой трапеции основания параллельны, следовательно BC II AD. По теореме, если прямая (AD) параллельна другой прямой находящейся в плоскости(BC), то эта прямая (AD) параллельна той самой плоскости (BMC) -> AD II BMC, ч.т.д.
4,7(98 оценок)
Ответ:
Irina12345678901
Irina12345678901
13.05.2021

Дано: ABCD - трапеция общего вида, AD - основание трапеции, M *не принадлежит (Перечеркнутая буква Э, в зеркальном отражении)* плоскости ABCD.
Доказать: AD II BMC

"Точку M можно расположить где угодно, лишь бы она не входила в плоскость ABCD, т.е.
можно делать и не такой чертеж как у меня на рисунке."

Доказательство:
BC - общася сторона трапеции ABCD и треугольника BCM.
В любой трапеции основания параллельны, следовательно BC II AD.
По теореме, если прямая (AD) параллельна другой прямой находящейся в плоскости(BC), то эта прямая (AD) параллельна той  самой плоскости (BMC) -> AD II BMC, ч.т.д.

4,6(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ