М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
margaret1967m
margaret1967m
06.08.2022 03:34 •  Геометрия

Дан равнобедренный треугольник авс с основанием ас. отрезок mn с концами на боковых сторонах является средней линией треугольника и равен √15.около треугольника описана окружность с центром о и радиусом, равным 8.найти длину
отрезка ом

👇
Ответ:
555768
555768
06.08.2022

Решение: Центр О описанной окружности лежит на медиане, проведенной к основанию треугольника.

Медиана проведенная к основанию равнобедренного треугольника является его биссектрисой и высотой (свойство равнобедренного треугольника)  .

Cредняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна её половине.

Поэтому AC=2*MN=2*корень (15).

Пусть ВК – медиана, проведенная к основанию АС, тогда

АК=СК=1\2*АС=

1\2* 2*корень (15)=корень(15).

1 случай) Если центр О описанной окружности лежит внутри треугольника АВС, тогда:

По теореме Пифагора OK^2=OA^2-АK^2

OK^2=8^2-(корень(15))^2=49

ОК=7

ВК=ОВ+ОК=8+7=15.

По теореме Фалеса так как MN||AC, АК=СК, то МL=NL, где L– точка пересечения медианы ВК и средней линии MN.

ML=NL=1\2*MN=1\2*корень (15).

По теореме Фалеса так как MN||AC, АМ=СМ, CN=BN, значит BL=KL

BL=KL=1\2*BK=1\2*15=7.5

LO=OB-BL

LO=8-7.5=0.5

MN||AC, ВК перпендикулярна к АС, значит ВК перпендикулярна к MN, значит треугольник LMO прямоугольный с прямым углом MLO.

По теореме Пифагора:

OM^2=LO^2+ML^2

OM^2=0.5^2+(1\2*корень (15))^2=4

OM=2

2 случай) Если центр О описанной окружности лежит вне треугольника АВС, тогда:

По теореме Пифагора OK^2=OA^2-АK^2

OK^2=8^2-(корень(15))^2=49

ОК=7

ВК=ОВ-ОК=8-7=1.

По теореме Фалеса так как MN||AC, АК=СК, то МL=NL, где L– точка пересечения медианы ВК и средней линии MN.

ML=NL=1\2*MN=1\2*корень (15).

По теореме Фалеса так как MN||AC, АМ=СМ, CN=BN, значит BL=KL

BL=KL=1\2*BK=1\2*1=0.5

LO=OB-BL

LO=8-0.5=7.5

MN||AC, ВК перпендикулярна к АС, значит ВК перпендикулярна к MN, значит треугольник LMO прямоугольный с прямым углом MLO.

По теореме Пифагора:

OM^2=LO^2+ML^2

OM^2=7.5^2+(1\2*корень (15))^2=60

OM=корень(60)=2*корень(15)

 

з.і. вроде так*

4,8(9 оценок)
Открыть все ответы
Ответ:
annaantonova0
annaantonova0
06.08.2022
1. PABCD - правильная пирамида. PO_|_ (ABCD)
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12  см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см

2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²
4,8(98 оценок)
Ответ:
mamarika2001
mamarika2001
06.08.2022
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.&#10;
Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 
4,7(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ