1)AV - биссектриса
по св-ву бисскетрисы => что AC\AB = CV\VB = 1\2
т.к. AB = 2AC => что угол ABC = 30 градусов, угол CAB = 60 градусов
AB = BC\cos30 = 12\корень из 3
AC = 6\корень из 3
2)CM - медиана
Рассмотрим треугольник CAM
AM = 6\корень из 3 = AC
по теореме косинусов находим медиану
3)Пусть CK - высота
Рассмотрим треугольник AKC
AK = ACcos60 = 3\корень из 3
KB = AB - AK = 3
KC^2 = AK KB = 9 корней из 3
4)Sabc = CBAC\2 = 18\корней из 3
p=(9+3корня из 3)\корень из 3
r = S\p = 6\(6+корень из 3)
R = abc\4S = 2\корень из 3
Основания трапеции параллельны.
Её диагонали - секущие.
Накрестлежащие углы при их пересечении с основаниями равны. Треугольники, которые образуются при пересечении диагоналей, подобны по 3-м углам.
Коэффициент подобия этих треугольников равен отношению оснований трапеции.
k=4/8=1/2
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия.
Точка пересечения диагоналей делит высоту трапеции на части, являющиеся высотами треугольников.
Обозначим высоту меньшего треугольника h, высоту большего - Н.
Тогда h/H=1/2.
Высота трапеции содержит 1+2 =3 части.
Каждая часть=9:3=3 см
Поэтому h=3 см
Н=2•3=6 см.
Расстояния от точки пересечения диагоналей до оснований трапеции равны 3 см и 6 см.
*****************
Задача 2.
Наложим данные треугольники друг на друга так, чтобы стороны их равных углов совпали. Пусть общая вершина будет В, а сами треугольники – АВС и КВМ.
Так как оба треугольника равнобедренные и имеют равные углы при вершине, их углы при основаниях КМ и АС тоже равны ( свойство).
∆ КВМ~∆ АВС. k= ВС/ ВМ=15:5=3
Высота равнобедренного треугольника, проведенная к основанию, делит его пополам.
КО=ОМ, и АН=НС.
КО=3 ( ∆ КВО - египетский, проверьте по т.Пифагора.)
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия.
АН:КО=3.
АН=3•3=9
АС=9•2=18 см
Р ∆ АВС=2•ВС+АС=30+18=48 см
В В1
А Н С А1 С1
АВ=ВС=5см, А1В1=В1С1, уголВ=углуВ1, ВН=4см
т.к. треугольники равнобедренные, то углы при основании равны. А т.к. уголВ=углуВ1 => уголА=углуА1=уголВ=уголВ1. => треугольники подобны.
Т.к. ВН - высота равнобедренного треугольника, то она является и медианой (по св-вам равн. треуг.) => АН^2=5^2-4^2=9
АН=3см => АС=6см.
Из подобия треугольников:
АВ:АС=А1В1:А1С1
5:6=15:А1С1
А1С1=6*15:5=18см
PтреугольникаА1В1С1=15+15+18=48см
Решение: АК – биссектрисса угла А ВК=4, СК=2, Угол С – прямой.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон (свойство биссектриссы треугольника), тогда
AC\AB=CK\BK
AC\AB=2\4=0.5
AB=2*AC
BC=2+4=6 см
По теореме Пифагора
AC^2+BC^2=AB^2
AC^2+6^2=(2*AC)^2=4*AC^2
3*AC^2=36
AC^2=12
b=AC=корень(12)=2*корень(3) см
c=AB=2*AC=2* 2*корень(3)=4*корень(3) см
Медиана проведенная к гипотенузе прямоугольного треугольника равна половине длины гипотенузы
m ( c )=1\2*c=1\2*4*корень(3)=2*корень(3) см
Площадь прямоугольного треугольника равна половине произведения катетов
S=1\2*a*b=1\2*6*2*корень(3)= 6*корень(3) см^2
Площадь треугольника равна половине произведения высоты на длину основания, к которому она приведена
S=1\2*c*h(c)
Высота равна h(c)=2*S\c=2*6*корень(3)\( 4*корень(3))=3 см
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы
R=1\2*c=1\2*4*корень(3)=2*корень(3) см
Радиус вписанной в прямоугольный треугольник окружности равен
r=(a+b-c)\2=(6+2*корень(3)-4*корень(3))\2=3-корень(3) см