авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6
Дано: (на первом чертеже)
Построить: прямоугольный треугольник АВС, в котором ∠А = 90°, АВ = m, ∠АВС = α.
Построение:
Сначала построим две взаимно перпендикулярные прямые.
1. Проведем прямую а и отметим на ней произвольную точку А.
2. Построим окружность с центром в точке А и произвольным радиусом. Точки пересечения окружности и прямой а обозначим M и N.
3. Построим две окружности с центрами в точках M и N произвольного одинакового радиуса (большего половины отрезка MN). Точки пересечения этих окружностей обозначим K и H.
4. Через точки К и Н проведем прямую b.
Эта прямая - перпендикуляр к прямой а.
На прямой а от точки А с циркуля отложим отрезок, равный данному отрезку m. Получили катет АВ.
Затем построим угол, равный данному. Для этого:
1. Проведем дугу произвольного радиуса с центром в вершине данного угла и такую же дугу с центром в точке В.
Обозначим точки пересечения этой дуги со сторонами данного угла Е и F, а точку пересечения дуги с прямой а - Е'.
2. С циркуля измерим расстояние EF и проведем дугу такого радиуса с центром в точке Е'. Точку пересечения с первой дугой обозначим F'.
∠ABF' = α.
Проведем луч ВF'. Точка пересечения этого луча с прямой b - это третья вершина ΔАВС.