Длина такого отрезка равна высоте, опущенной на основание, деленной на КОСИНУС угла отрезка с этой высотой.
Косинус - монотонно убывающая функция (между 0 и 180, между 0 и 90 она еще и положительна, а у нас именно такой случай), что легко видно из координатного определения (асбцисса радиуса единичной окружности, чем больше угол, тем меньше координата конца радиуса - в интервале углов от 0 до 90).
Поэтому длина отрезка будет монотонно возрастать. Пока конец отрезка не достигнет вершины (конца основания).
Есть еще какая-то теорема, что в треугольнике против большего угла лежит большая сторона, применение этой теоремы к треугольнику, образованному отрезком, боковой стороной и куском основания, сразу решает задачу... но я не помню, как эта теорема доказывается без применения тригонометрии:
ответ:
1.
пусть данный треугольник авс, ав> вс> са. угол асв=105, угол авс=15, угол вас=60. разделим св пополам (точка д) и востановим из этой точки перпендикуляр до пересечения с ав (точка к) , проведем отрезок ка. треугольник вкс - равнобедренный с углами у основания 15 град. построим дугу с центром в точке а и проходящую через точку с до пересечения с ав (точка м) треугольник амс равнобедренный и равносторонний с углом 60 град. но и треугольник смк тоже равнобедренный, т. к. угол мкс=углу ксм=30 град, а угол кмс=120 град. это легко устанавливается из своиств углов треугольников (сумма их равна 180 град) и своиства открытого угла.
объяснение:
OH=SO·tgα=6tg30⁰=6/√3
ОН равна половине стороны квадрата основания
а=2*6/√3=12/√3
Апофема является гипотенузой. А в прямоугольном треугольнике она вдвое болше катета, лежащего напротив угла в 30⁰
SH=2OH=12/√3
Находим площадь боковой грани как площадь треугольника
S₁=1/2*a*h=1/2*12/√3*12/√3=1/2*144/3=72/3=24
Таких граней 4. Итого, площадь боковой поверхности
S=4S₁=4*24=96