Площадь прямоугольного треугольника равна половине произведения его катетов.
Так как периметр равен 90 см, а гипотенуза - 41 см, сумма катетов равна
90-41=49 см.
Пусть один катет равен х, тогда второй 49-х
По т. Пифагора квадрат гипотенузы равен сумме квадратов катетов.
Составим уравнение:
х² +(49² -х² )=41²
После возведения в квадрат и приведения подобных членов ( что сделать не составит труда) получим квадратное уравнение:
2х² -98х+720=0
Разделим для удобства на 2
х² -49х+360=0
Решив это уравнение через дискриминант, получим два корня, т.к. дискриминант больше нуля (равен 961)
х₁=40
х₂=9
S=40*9:2=180 см²
Площадь прямоугольного треугольника равна половине произведения его катетов.
Так как периметр равен 90 см, а гипотенуза - 41 см, сумма катетов равна
90-41=49 см.
Пусть один катет равен х, тогда второй 49-х
По т. Пифагора квадрат гипотенузы равен сумме квадратов катетов.
Составим уравнение:
х² +(49² -х² )=41²
После возведения в квадрат и приведения подобных членов ( что сделать не составит труда) получим квадратное уравнение:
2х² -98х+720=0
Разделим для удобства на 2
х² -49х+360=0
Решив это уравнение через дискриминант, получим два корня, т.к. дискриминант больше нуля (равен 961)
х₁=40
х₂=9
S=40*9:2=180 см²
Треугольники АОВ и АОД - равносторонние, значит, все углы по 60 градусов.
Рассмотрим четырехугольник АВСД:
Угол А=угол ОАД+угол ОАВ=120 градусов.
Если четырехугольник вписан в окружность, то сумма противоположных углов 180, значит, угол С=180-120=60 градусов.
Треугольники СОД и СОВ - равнобедренные, значит, углы при основании равны.
Угол ДОС=углу ВОС=60:2=30 градусов, => угол ОВС=углу ОДС=30 градусов.
Угол СОД=углу СОВ=180-(30+30)=120.
Четыр-ник:
Угол Д=Углу В=60+30=90 градусов.
Центральный угол равен дуге, на которую опирается, значит дуга АВ=дуге АД=60 градусов, дуга ВС=дуге СД=120 градусов.
ответ: Углы четырехугольника: 120, 90, 60, 90; градусные меры дуг: 60, 120, 120, 60.