60 см
Объяснение:
Дана прямоугольная трапеция, BC - малое основание,AD- большое основание, <A=<B = 90, <D = 30
Радиус вписанной окр-ти по т.Пифагора
r = √(13^2 - 12^2) = 5
Проведем из точки C к AD высоту CH = AB = 2r = 10
Тр-к CDH - прямоугольный
CD = CH/sin30 = 10/0,5 = 20
HD = CHcos30 = 5√3
BC = AH = x
AD = AH + HD = x + 5√3
p = P/2 = (BC + AB + CD + AD)/2 = (x + 10 + 20 + x + 5√3)/2 = x + 15 + 2,5√3
S = p*r = (x + 15 + 2,5√3)*5
S = (BC + AD)/2 * AB = (x + x + 5√3)/2 * 10 = (2x + 5√3)*5
Приравняем
(x + 15 + 2,5√3)*5 = (2x + 5√3)*5 |:5
x + 15 + 2,5√3 = 2x + 5√3
х = 15 - 2,5√3
P = 2p = 2*(x + 15 + 2,5√3) = 2* (15 - 2,5√3 + 15 + 2,5√3) = 60 см
Площадь трапеции равна полусумме ее оснований на высоту.
Нам неизвестно ничего =) Будем думать.
В трапецию можно вписать окружность только в том случае, если суммы ее противоположных сторон равны. Так как нам дано, что окружность вписана (ее радиус равен 6), а трапеция равнобедренная, то сумма боковых сторон будет равна 28, и отсюда сумма оснований так же равна 28 (а полусумма 28:2). Радиус вписанной в трапецию окружности равен половине высоты. То есть высота получается равной 12 (2*6).
Ну вот и все. Вычисляйте площадь трапеции на здоровье ;)
14*12
когда угол 68 градусов углы,лежащие при основании равнобедренного треугольника по 56 градусов
когда угол 144 градуса углы,лежащие при основании равнобедренного треугольника по 18 градусов
когда угол 105 градуса углы,лежащие при основании равнобедренного треугольника по 37,5 град.