Искомую площадь можно найти по-разному.
1) Найти площадь четырехугольника АВОС и из нее вычесть площадь сектора круга.
2) Найти площадь ∆ АВС и из неё вычесть площадь сегмента. ограниченного дугой ВС и хордой ВС.
1) Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности⇒
∠ВАО=∠САО=120°:2=60°
∠АВО=∠АСО=90° т.к. радиусы, проведенные в точки касания, перпендикулярны касательным. ⇒
угол ВОС=60°, и ∆ ВОС - равносторонний.
∆ АВО=∆ АСО - прямоугольные.
АВ=BО:tg60°=6/√3=2√3
Длина дуги ВС =1/6 длины окружности, т.к. угол ВОС=1/6 полного круга.
◡ВС=2πr:6=12π:6=2π
P=AB+AC+◡BC=2•2√3+2π=4√3+2π = ≈13,2114 см
Ѕ (АВОС)=2Ѕ(АВО)=ВО•AB=6•2√3=12√3
S (сектора)=1/6πr²=36π:6=6π
S(фиг. АВС)=S(ABOC)-S(сект)=12√3-6π=6•(2√3-π)=≈1,935 см*
Объяснение:
Как то так))) надеюсь удачки))
Назовем соприкосновение наклонной и плоскости точкой А, а соприкосновение плоскости с перпендикуляром В. Рассмотрим треугольник MAB, угол M = 60 градусов по условию, угол B = 90 градусов т.к. "перпендикуляр". Третий угол А по теореме о сумме углов треугольника = 180 - 60 - 90 = 30.
Теперь нам известны все углы и одна сторона MB = 20см, остается "решить треугольник".
Т.к. знаем все углы, воспользуемся теоремой Синусов: MB/sinA = AB/sinM = AM/sinB.
Подставим известное: 20/sin30 = AB/sin60 = AM/sin90. Сдесь 2 неизвестных, по условию нам нужно найти длину наклонной AM. Выразим её из равенства:
AM = sin90*20/sin30
AM = 1*20/0.5 = 20*2 = 40 см.
ответ: 40см