Так как меньшая сторона равна 8, то высота трапеции тоже 8. Найдём длину меньшей части основания: 100-64=корень из 36=6. Так как гипотенуза нашего треугольника 10, то верхнее основание трапеции тоже 10. Значит мы можем найти ее площадь :S=10+16/2*8=104
Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так. Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления. МО=3, как катет, лежащий против угла в 30° Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания. Далее вспоминаем свойство медиан Δ-ка: Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Поэтому Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
(Смотри рисунок). Дано: АВСД - трапеция ЕФ - средняя линия ЕФ1=12 ФФ1=6 угол 1=углу2 Найти S
Угол 1=углу3(как внутренние накрест лежащие при параллельных прямых ВС и АД и секущей ВД). Так как угол 3=углу2, то ΔВСД - равнобедренный и ВС=СД=АВ. ЕФ1 - средняя линия треугольника АВД ⇒ АД по свойству средней линии треугольника рана 2×12=24. ФФ1 - средняя линия треугольника ВСД ⇒ ВС=2×6=12. Значит СД и АВ равны 12. Найдем АН. ВС=НК=12. АН+КД=24-12=12. Так как трапеция равнобедренная, то АН=КД=12/2=6. Рассмотрим ΔАВН - прямоугольный. По теореме Пифагора ВН= Площадь трапеции - это средняя линя(которая равна 12+6=18)×высоту S=18×
Так как меньшая сторона равна 8, то высота трапеции тоже 8. Найдём длину меньшей части основания: 100-64=корень из 36=6. Так как гипотенуза нашего треугольника 10, то верхнее основание трапеции тоже 10. Значит мы можем найти ее площадь :S=10+16/2*8=104