Буду рад: в прямоугольном треугольнике авс (угол с=90 градусов). точка м лежит на катете вс. эта точка находится на равном расстоянии от ав и ас, мс=2, ам=4 найдите углы треугольника авс.
На чертеже все обозначения и дополнительные построения. Я пронумеровал окружности, чтобы не писать каждый раз "окружность, описанная вокруг..." 1) Точка K соединяется с B и C, точка L - с A и D; BC II AD => ∠BDA = ∠DBC; ∠CKO = ∠CBO; как вписанные в окружность 3; ∠ALO = ∠ADO; как вписанные в окружность 4; => ∠ALK = ∠ CKL (это тот же угол, что и ∠CKO, я сразу предупреждаю, что надо внимательно следить за тем, какие объекты соответствуют обозначениям) => KC II LA; совершенно аналогично через пару углов ∠OAD = ∠OCB; и равные им углы ∠KLC и ∠BKL доказывается KB II LD; 2) Если продлить KB, KC, LD и LA (если нужно, тут возможны варианты, в случае, изображенном на чертеже, продлевать LA не нужно) до взаимного пересечения, то получится параллелограмм KNLP; Точка N лежит на окружности 1, потому что ∠ANB = ∠ALD (так как KN II LD) а ∠BOA = 180° - ∠AOD = (поскольку четырехугольник AOLD вписан в окружность 4) = 180° - (180° - ∠ALD) = ∠ALD; То есть хорда AB окружности 1 видна из точек O и N под одинаковым углом. Поэтому они лежат на одной окружности 1. По пути я доказал, что ∠BOD = ∠COD = ∠ALD (все эти углы составляют 180° в сумме с ∠AOD); Поскольку ∠KPL + ∠ALD = 180° (так как KP II LA), то четырехугольник CODP вписан в окружность 2, и точка P лежит на ней. 3) Теперь я проведу из точки N прямую NM до пересечения с окружностью 2 в точке P1. (Её нет на чертеже, и сейчас станет ясно, почему.) ∠ANM = 180° - ∠AOM = ∠MOC = 180° - ∠CP1M; то есть AN II CP1; поскольку через точку C можно провести только одну прямую, параллельную AN, точка P1 совпадает с P. 4) Таким образом, доказано, что диагональ NP параллелограмма KNLP проходит через вторую общую точку окружностей 1 и 2, то есть через точку M. Разумеется, M - середина второй диагонали KL (точка пересечения диагоналей параллелограмма), что требовалось доказать, и одновременно - середина NP.
Делается дополнительное построение, как на чертеже. ∠CFD = ∠ADF = ∠CDF (DE - биссектриса ∠ADC); поэтому ΔCFD - равнобедренный, CF = CD; Далее, поскольку CF II AD и AE = BE; то DE = FE (миллион объяснений, от теоремы Фалеса до равенства треугольников EBF и AED) Поэтому в равнобедренном ΔCFD CE - медиана к основанию. То есть CE перпендикулярно DE, В прямоугольном ΔCED EM - медиана к гипотенузе, то есть EM = CD/2 = 39/2; Но EM - средняя линия трапеции ABCD; EM = (BC + AD)/2; (Уже после опубликования решения автор мне заметила, что ΔEMD равнобедренный по той же самой причине, что и ΔFCD, поскольку средняя линия EM II AD, поэтому сразу можно было бы написать EM = MD = CD/2) Отсюда AD = CD - BC = 27; Теперь надо провести CK II AB; в ΔCKD CD = 39; CK = AB = 36; KD = AD - BC = 15; то есть получился Пифагоров треугольник (15^2 + 36^2 = 39^2) Это означает просто, что трапеция ABCD - прямоугольная, боковая сторона AB перпендикулярна основаниям и является высотой трапеции. Отсюда площадь трапеции EM*AB = 36*39/2 = 702
К AC точка С
К AB точка H
MH=MC
AM-общая⇒ΔAMC=ΔAMH⇒CAM=MAH
CAM=30 т.к.CM/AM=1/2⇒CAB=60⇒CBA=30