Сумма острых углов равна 90 2. Катет лежащий против угла 30 равен половине гипотенузы 3. Обратная теорема: Если катет равен половине гипотенузы, то угол, лежащий против него равен 30
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Проведём в трапеции ABCD высоты BE и CF из тупых углов. Четырехугольник BCFE является прямоугольником (противоположные стороны попарно параллельны, тогда это параллелограмм, то так как есть прямой угол, это прямоугольник), поэтому EF=BC. Известно, что AD-BC=6, тогда AD-EF=6, откуда AE+DF=6. Так как трапеция равнобокая, AE=DF=6/2=3. Рассмотрим треугольник ABE. Он прямоугольный, так как BE - высота трапеции, кроме того, его гипотенуза AB в 2 раза больше катета AE. Значит, угол лежащий против катета AE - угол ABE - равен 30 градусам. Тогда второй острый угол этого треугольника - BAD - равен 90-30=60 градусам. В равнобокой трапеции углы при большем основании равны, тогда угол CDA также равен 60 градусам. Углы при меньшем основании также равны, каждый из них равен 90+30=120 градусам (ABC=ABE+EBC=30+90=120).
2. Катет лежащий против угла 30 равен половине гипотенузы
3. Обратная теорема: Если катет равен половине гипотенузы, то угол, лежащий против него равен 30