Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
Из прям-ого треугольника ДАС по теореме Пифагора
DC^2=18^2+24^2=324+576=900=30^2; DC=30(cm)
Из прям-ого тр-ка АВС: AB^2=AC^2+BC^2; BC=coren(26^2-24^2)=coren((26-24)(26+24))
=coren(2*50)=coren100=10(cm)
S(бок)=S(ADC)+S(ABD)+S(BCD); все тр-ки прямоугольные, площадь равна половине произведения катетов!)
S=(18*24)/2+(18*26)/2+(30*10)/2=9*24+9*26+15*10=216+234+150=600(cm^2)