Объяснение:проводим пряммую, отмечаем на ней точку, получаем развернутый угол (180 градусов)
строим равностонний треугольник (нарисовали пряммую, отложили отрезок, с его концов росчерком циркуля равным построенному отрезку в одной полуплоскости относительно пряммой построили окружности, они пересекутся в третьей точке, получили равносторонний треугольник, каждый угол 60 градусов)
проводим биссектриссу угла 60 градусов (получим углы в 30 градусов), задача на построение биссектриссы базовая
проводим биссектриссу угла 30 градусов (получим углы в 15 градусов)
от вершины развернутого угла откладываем угол равный углу 15 градусов, дополняющий угол (второй угол) будет равный 165 градусам.
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.