№1 Площадь параллелограмма равна произведение основания на высоту. Нам дана площадь и сторона параллелограмма, значит высота равна 187/17=11 см №2 Высота = 18/3=6 см Формула площади: половина произведения основания на высоту, значит площадь равна 1/2 *18*6=54 см №3 Высота = 1/2 * (4+12)=8 см Форумла площади трапеции: произведение полусуммы оснований на высоту, значит площадь равна 1/2 (4+12) * 8 =64 см №4 Острый угол параллелограмма равен 180-150=30 градусов (т.к. односторонний при параллельных прямых). Проведем высоту, получился прямоугольных треугольник с гипотенузой 4 см и острым углом в 30 гарудсов, значит по свойству прямоугольного треугольника высота равна 1/2 * 4=2 см. Площадь равна 7*2=14см №5 Обозначим одну часть за х. Тогда 3х+5х=8, значит х=1. значит диагонали ромба равны 3см и 5 см Формула площадь : половина произведения диагоналей Найдем площадь 1/2 * 3 * 5 = 7,5 см
Треугольник PQW не обязательно прямоугольный. По т. синусов для него получаем PW=2R·sin∠Q=20·sin∠Q, а по т. косинусов для него же 20²·sin²∠Q=16²+12²-2·16·12·cos∠Q. Решаем это уравнение, получаем cos∠Q=0 и cos∠Q=24/25. Т.е. в первом случае PQW - действительно прямоугольный (см. рис. 1), а второй случай также существует при выпуклом ABCD (см. рис. 2.)
Т.к. AB/PB=CB/QB=5/4, то треугольник ABC подобен треугольнику PBQ с коэффициентом подобия 5/4, откуда AC=(5/4)·PQ=5*16/4=20 и AC||PQ. Аналогично, треугольник BCD подобен треугольнику QCW с коэффициентом 5, т.е. BD=5QW=5*12=60 и BD||QW, откуда угол между диагоналями ABCD равен углу PQW. Поэтому, площадь ABCD вычисляется по формуле (1/2)AC·BD·sin(∠PQW). Значит, в случае, когда PQW - прямоугольный S(ABCD)=(1/2)·20·60·sin(90°)=600. Во втором случае S(ABCD)=(1/2)·20·60·√(1-24²/25²)=168.
а) В1С+АВ+ВВ1+В1А = В1С+(АВ+ВВ1)+В1А=В1С+(АВ1+В1А)=В1С+АА=В1С+0=В1С
б)ДС-ВВ1=ДС-ДД1=Д1С