Объем параллелепипеда равен произведению трех его измерений, то есть V=а*b*с = 4,5 ед³. Искомый объем - объем треугольной пирамиды с вершиной в точке D1 и с основанием - правильным треугольником АВ1С. Отметим, что объем этой пирамиды равен объему данного нам параллелепипеда минус объем четырех равных треугольных пирамид при свободных вершинах параллелепипеда. Рассмотрим одну мз них: пирамида ACDD1 с основанием - прямоугольным треугольником ACD и высотой DD1 = c. Ее объем равен V1 = (1/3)*Sо*h. где Sо = (1/2)*а*b (а и b -стороны основания параллелепипеда, а "h" - высота параллелепипеда, то есть h = с. Тогда V1=(1/3)*(1/2)*а*b*с = а*b*с/б. Таких пирамид четыре, значит искомый объем равен
Точка Р - середина стороны АВ. АК=АВ/2 ⇒АК=АР. Треугольник КАР равнобедренный, АК=АР. Обозначим ∠РКА=α ⇒ ∠КРА=∠BРД=α. ВМ - высота тр-ка АВС. ВМ и КД пересекаются в точке О. Прямоугольные тр-ки КОМ и ВДО подобны, т.к. ∠КОМ=∠ВОД как вертикальные, значит ∠ОВД=∠РКА=α. ВМ - высота и биссектриса равнобедренного тр-ка АВС, значит ∠АВС=2α. В прямоугольном тр-ке РВД ∠BРД+∠PBД=α+2α=90°, 3α=90°, α=30°. Катет ВД лежит напротив в этого угла, значит РВ=2ВД=2·2=4. АВ=2РВ=2·4=8. В равнобедренном тр-ке АВС угол при вершине 2α=60°, значит он правильный. Периметр тр-ка АВС: Р=3АВ=3·8=24 - это ответ.
Прокуратор Иудеи призван определить судьбу Иешуа Га-Ноцри, обреченного на казнь. Жесткий и властный человек, он решается на допрос обвиняемого. Во время этого диалога Понтий Пилат был совершенно очарован Иешуа, однако несмотря на чудеса, показанные ему (Га-Ноцри излечил мигрень прокуратора), смертная казнь была подтверждена. Из-за своей симпатии к Иешуа Пилат решается на месть. Он приказывает убить того человека, который подставил Га-Ноцри под удар Синедриона. Понтий Пилат и Иешуа прониклись друг к другу необъяснимыми чувствами, из-за которых первый страдал всю оставшуюся жизнь. Он понимал, что подписал собственноручно приговор настоящему чуду. Поэтому вся его физическая и бессознательная жизнь была заключена в тюрьму, которую он сам для себя и создал. Во время последнего полета Сатаны, Воланд попросил своего оппонента даровать Пилату свободу, что тот и сделал. -
Объем параллелепипеда равен произведению трех его измерений, то есть V=а*b*с = 4,5 ед³. Искомый объем - объем треугольной пирамиды с вершиной в точке D1 и с основанием - правильным треугольником АВ1С. Отметим, что объем этой пирамиды равен объему данного нам параллелепипеда минус объем четырех равных треугольных пирамид при свободных вершинах параллелепипеда. Рассмотрим одну мз них: пирамида ACDD1 с основанием - прямоугольным треугольником ACD и высотой DD1 = c. Ее объем равен V1 = (1/3)*Sо*h. где Sо = (1/2)*а*b (а и b -стороны основания параллелепипеда, а "h" - высота параллелепипеда, то есть h = с. Тогда V1=(1/3)*(1/2)*а*b*с = а*b*с/б. Таких пирамид четыре, значит искомый объем равен
Vи = V - 4*V1 = а*b*с - 4*(а*b*с/б).
Или Vи = 4,5 - (2/3)*4,5 = 4,5-3 =1,5.
ответ: Vи = 1,5 ед³.