Уравнение окружности в общем виде:
(x - x₀)² + (y - y₀)² = R²,
где (x₀; y₀) - координаты центра,
R - радиус окружности.
1. Окружность с центром О:
координаты центра (0; 0), R = 1,
уравнение окружности:
(x - 0)² + (y - 0)² = 1²
x² + y² = 1
2. Окружность с центром О₁:
координаты центра (- 3; 1), R = 2,
уравнение окружности:
(x - (- 3))² + (y - 1)² = 2²
(x + 3)² + (y - 1)² = 4
3. Окружность с центром О₂:
координаты центра (2; 3), R = 1,
уравнение окружности:
(x - 2)² + (y - 3)² = 1²
(x - 2)² + (y - 3)² = 1
4. Окружность с центром О₃:
координаты центра (3; 0), R = 1,5,
уравнение окружности:
(x - 3)² + (y - 0)² = 1,5²
(x - 3)² + y² = 2,25
5. Окружность с центром О₄:
координаты центра (0; - 3), R = 2,
уравнение окружности:
(x - 0)² + (y - (- 3))² = 2²
x² + (y + 3)² = 4
свойства углов параллелограмма: противоположные углы равны, а прилежащие к одной стороне в сумме составляют 180°.
Если в задании примеры на нахождение углов, прилежащих к одной стороне, то можем решать с уравнений.
1) один угол равен 52°, три остальных 52°-это ему противолежащий, и два угла по 180°-52°=128°.
2) речь о противоположных углах, в сумме 174°, значит, каждый по 174°/2=87°, тогда два других по 180°-87°=93°
3)один угол х, второй х+28, в сумме 180, значит, х+х+28=180⇒х+14=90;
х=90-14=76, значит, два угла по 76°, а два других по 76°+28°=104°
4) меньший угол х, больший 4х, уравнение х+4х=180; х=180/5=36
Два угла по 36°, два других по 4*36°=144°
5)один угол 4х, второй 5х, здесь х>0, это коэффициент пропорциональности, 4х+5х=180;х=180/9=20, значит, один угол 20°*4=80°, ему противоположный тоже 80°, а два других 180°-80°=100°, или 20°*5=100°
0,5=CB/16
CB=8