Задача не требует рисунка, т.к. проверяются только формулы.
1. Если высота ромба х см, то сторона ромба, лежащего в основании, равна х+0.5х=1.5х.
2. Сумма стороны и высоты 1.5х+х=7.5, откуда х=7.5/2.5=3/см/, высота 3см, сторона ромба 1.5*3=4.5/см/
3. Площадь полной поверхности состоит из двух площадей оснований ромба и площади боковой поверхности, равной произведению периметра основания на высоту. т.е. 2S₁+S₂=S; где S - площадь полной поверхности, - S₁-площадь основания, S₂ -площадь боковой поверхности.
S₁=4.5*3=13.5/см²/; 2S₁=27/см²/;S=107 см²;
4. S₂=(S-2S₁)=107-27=80/см²/, тогда высота параллелепипеда равна 80/(4.5*4)=40/9
5. Объем равен произведению площади основания на высоту параллелепипеда, т.е. 13.5*40/9=60/см³/
ответ: 1. 21°; 2. 11,5м; 3. 128; 4. 9 и 81°; 5. 36,5 и 53,5°
Объяснение: 1. В прямоугольном треугольнике сумма острых углов равна 90°. ∠Е=69°, значит ∠М=90-69=21°
2. В прямоугольном треугольнике катет, лежащий против ∠30° равен половине гипотенузы: СР=ЕР/2=23/2=11,5м
3. В прямоугольном треугольнике сумма острых углов равна 90° и катет, лежащий против угла 30° равен половине гипотенузы. ∠D=90-60=30°; МD=СМ*2=64*2=128;
4. Для решения этой задачи примем один острый угол за 3 части, а второй за 27 частей. Тогда сумма их равна: 3+27=30частей, а сумма этих углов равна 90°. Узнаем сколько градусов приходится на 1 часть: 90/30=3°. Значит один угол равен 3*3=9°, а второй 3*27=81°;
Для решения этой задачи примем меньший угол за х, тогда больший угол будет равен х+17. Составим уравнение:
х+(х+17)=90; 2х=90-17=73
х=73/2=36,5°;
второй угол=90-36,5=53,5°
дано:дана трапеция ABCD,где ВС-меньшее основание и оно равно 6см,высота(h)равна 4см,угол А равен 45 градусам,найти площадь(S)ABCD.решение:1.опустим высоту к АD и обозначем ее как BМ.2.рассмотрим треуголник АBМ-прямоугольный,угол BМА равен 90 градусов,угол МАB равен 45 градусов,угол ABM равен 90- 45равно 45,значит треуголник ABM равнобедренный,АМ-4 см,опустим вторую высоту СN равен Nd РАВНО ЧЕТЫРЕМ .BC РАВЕН MN и равно 6,от сюда следует,что АDравен4+6+4равно14,и площадь ABCD равно 14+6/2*4 равно 40.