1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
По определению синус угла равен отношению противолежащего катета к гипотенузе)) нужно построить прямой угол (две перпендикулярные прямые) --это будет первая вершина треугольника, от вершины прямого угла отложить отрезок, равный 3 см (или 6 мм, или 9 метров...), обозначить вершину А --это будет вторая вершина треугольника, из точки А раствором циркуля, равным 5 см (или 10 мм, или 15 метров соответственно) провести окружность, точка пересечения окружности со второй прямой будет третьей вершиной треугольника и вершиной нужного угла (обозначить В), АВ - гипотенуза... 2) аналогично... катет равен 1 (противолежащий углу), гипотенуза = 2
V=1/3*15²*12
V=900(см³)