Два конуса (один внутри другого) построены на одном основании. Углы между образующими и высотой конуса равны 300 и 600 . Разность высот равна
12√3. Площадь сферы, описанной около большого конуса, равна πk, найдите k.
Объяснение:
Рассмотрим сечение данной комбинации тел , проходящее через высоты конусов. Центр О ,описанной окружности около большего ΔАВМ, лежит на серединном перпендикуляре, который совпадает с высотой МК, т.к. МА=МВ образующие конуса.
Вершина О малого конуса лежит на высоте большого конуса .
ΔОАВ-равнобедренный,т.к. ОА=ОВ образующие малого конуса ⇒ОА=ОВ=R и ОА=ОВ=ОМ=R.
По условию задачи S(сферы )=πк , ∠АМК=30°,∠АОК=60°, H-h=12√3 , H-высота большого конуса , h-высота малого конуса
Т.к. H-h=12√3 , то МО= 12√3 ⇒ R =12√3.
S(сферы )=4πR² и S(сферы )=πк приравняем правые части:
4π(12√3)²=πк
к =4*144*3, к=12³ или к=1728
Надеюсь я Если эта информация вам отметить мой ответ "лучшим"
Объяснение:
а)Угол А=Угол BAD+Угол CAD=24°+42°=66°.
Если АD-высота, то угол D=90°.
Угол С=90°-Угол САD=90°-42°=48°.
Угол В=90°-Угол ВАD=90°-24°=66°.
Угол A=Угол B, а у равнобедренного треугольника углы у основания будут равны. Значит, ABC-равнобедренный треугольник. А его боковые стороны - AC, BC.
б)
1-метод.Если СК-биссектриса, то Угол ACK=Угол BCK=½×Угол С=½×48=24°.
Угол АКС=180°-(Угол А+Угол АСК)=180°-(66°+24°)=180°-90°=90°.
Угол ВКС=180°-(Угол В+Угол ВСК)=180°-(66°+24°)180°-90°=90°.
2-метод. Если треугольник равнобедренный, то биссектриса данного треугольника будет ещё и его высотой. То есть, со стороной АВ она образует углы в 90°.
когда рассматривают подобие треугольников, один из примеров подобных треугольников как раз этот)))
просто у этой темы есть история... и, если эту историю пропустить, то все дальнейшее становится менее непонятным (как в Вашем случае)))
Итак, прямоугольный треугольник с высотой, проведенной к гипотенузе
(из вершины прямого угла)))
получилось три прямоугольных треугольника: исходный (АВС) и два ему
подобных (АСН и ВСН)
важно сначала понять, а потом и запомнить, что все эти три треугольника подобны
в прямоугольном треугольнике сумма острых углов = 90 градусов)))
например, угол В = 90-А
и если тут же рассмотреть треугольник ВСН, то в нем тоже есть угол В,
значит, угол НСВ = А ⇒ прямоугольные треугольники АВС и НВС подобны)))
аналогично для треугольников АВС и АНС...
угол А -- общий, ⇒ углы В и АСН -- равны))) и эти треугольники подобны)))
и осталось уяснить, что и треугольники АНС и ВНС -- подобны)))
важно увидеть все равные углы в этих треугольниках)))
иначе остальное будет неясно)))
теперь должно стать понятно, что "Углы А и НСВ равны..."
а дальше определение синуса и косинуса)))
и это тоже очень важно сначала понять, а потом и запомнить)))
синус угла = отношению ПРОТИВОлежащего катета к гипотенузе
косинус угла = отношению ПРИлежащего катета к гипотенузе
это определения)))
в любом прямоугольном треугольнике (где стороны называются катетами и гипотенузой))) можно записать эти отношения для острых углов)))
например:
sinA = CB / AB -- из треугольника АВС
sinA = CH / CA -- из треугольника НАС
sinA = sin(HCB) = HB / CB -- из треугольника НВС
cosA = AC / AB -- из треугольника АВС
cosA = AH / CA -- из треугольника НАС
cosA = cos(HCB) = HC / CB -- из треугольника НВС
все тоже самое можно записать и для угла В )))
это вторая очень важная часть истории)))
и эти формулы используются при решении таких задач)))
т.к. по определению синуса sinA = CH / CA ⇒
CH = CA * sinA
теперь из равенства cosA = AC / AB выразим АС...
АС = АВ * cosA и подставим в первое равенство...
СН = АВ * cosA * sinA
используют именно эти формулы,
т.к. по условию косинус угла А известен, АВ -- дано))) -- т.е. всегда смотрят, что именно дано в условии задачи...
и еще одна важная формула -- основное тригонометрическое тождество:
sin²x + cos²x = 1 -- верно всегда и везде и для любых углов)))
одно слово -- тождество)))
из него, когда нужно, можно и синус выразить
sin²x = 1 - cos²x ⇒ sinx = (+-) √(1 - cos²x)
и косинус...
cos²x = 1 - sin²x ⇒ cosx = +- √(1 - sin²x)
вот... как-то так...