Т к плоскость, параллельна плоскости основания и отстоит от вершины конуса на расстояние 3, плоскость пересекает конус по окружности, радиус которой в 2 раза меньше радиуса основания, значит площадь сечения в 4 раза меньше площади основания - S(сеч)=12:4=3
Удаленное решение пользователя TwilightStar2016 верное, за исключением досадной описки в конце. Вот оно: Решение. 1)MN-касат. OE-r-следовательно <MEK=90º=>KE-высота, медиана, биссектриса. КЕ-медиана=>МЕ=ЕN=20:2=10 2)OD-r MK-касат=><KDO=90º 3)Рассмотрим треу. MEK и DOK. <MEK-общий, <KDO=<MEK=>треу. MEK ~ DOK.(по двум углам) 4)MN и MK-касат.,MD-10=>ME=MD (по двум касат.) DK=MK-MD=26-10=16см. 5) треу. MKE-прямоуг. MK^2=ME^2+EK^2(теорема Пифагора. ) EK=корень ME^2-MK^2=корень из 676-100=корень из 576=24. 6)Отношение. 10/OD=24/16=26/OK 24/16=26/OK 24×OK=16×26 24OK=416 OK=416:21 OK=17целых1/3 OE=EK-OK=24-17целых1/3=6целых2/3 (а не 6и1/3, как было в ответе). Можно было решить так: По формуле радиуса вписанной в треугольник окружности: r=S/p, где S - площадь, а "р" - полупериметр треугольника. У нас р=(26+26+20):2 = 36. S=√[p(p-a)((p-b)(p-c)] - формула Герона. S=√(36*18*18*16)=240. r=240/36=6и2/3. ответ: r=6и2/3.
Смотрите. Берем треугольник АВС, а рядом с ним рисуем (или воображаем, что проще) треугольник МВР. АВ/МВ=3. Коэффициент подобия 3. Важно помнить, что, если коэффициент подобия больше единицы, то знаичит первый треугольник больше второго. Площадь АВС в 3 в квадрате, то есть в 9 раз больше, чем площадь МВР.
Теперь берем треугольник МВР, а рядом рисуем АВС. МВ/АВ=1/3. Коэффициент подобия 1/3. Это значит, что первый треугольник меньше второго. Площадь МВР составляет 1/3 в квадрате или 1/9 часть площади АВС. Вот и все премудрости. Просто здесь важно стороны какого треугольника являются делимым, а какие делителем. Ведь в операции деления, в отличие от операции умножения, важен порядок. А, находя коэффициенты подобия, мы именно делим!