Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
Правильный восьмиугольник вписан в окружность. Площадь кругового сектора, соответствующего центральному углу восьмиугольника, равна 3п. Найдите площадь восьмиугольника
1
Попроси больше объяснений
Следить Отметить нарушениеот Emelean 14.04.2014
ответы и объяснения

massg
профессор2014-04-14T11:57:41+04:00
Для восьмиугольника центральный угол, опирающийся на его сторону, равен 360/8=45 градусов Площадь восьмиугольника равна восьми площадям составляющих его треугольников, в которых боковые стороны равны радиусу описанной окружности и угол между ними равен 45 градусов. Площадь треугольника равна половине произведения его сторон на синус угла между ними: S треуг = 1/2 а*b*sinA, для данного случая Sтреуг=1/2 * R^2 *sin45=1|4 * R^2*√2 S мног = 8*S треуг=2*R^2 * √2 Найдем R^2 Sокр = пи*R^2 = 8*Sсектора=8*3*пи=24*пи откуда R^2=24 подставив получим Sмног=2*24*√2=48√2 ответ: 48√2