М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SAIIIEK
SAIIIEK
27.09.2021 04:12 •  Геометрия

Длина хорды равна 40,а расстояние от центра окружности до этой хорды равно 48. найти диаметр окружности

👇
Ответ:
AnastasiaKT
AnastasiaKT
27.09.2021
По теореме Пифагора
20^2 + 48^2 = r^2
r=52
d=2r=104
4,8(37 оценок)
Открыть все ответы
Ответ:
BrainDay12
BrainDay12
27.09.2021
а) Векторы ВВ1 и В1С совпадают с катетом и гипотенузой прямоугольного треугольника BВ1С, следовательно, ВВ1С=45°.б) BD = B1D1 , т.к. они сонаправлены и имеют одинаковую длину. BD = B1D1 =- DB .Угол между DB и DA — угол между стороной и диагональю квадрата, т.е. α=45°. Тогда угол междуDA и B1D1 равен 135°.в) A1C1 и A1B совпадают со сторонами равностороннего треугольника АВС и отложены из одной точки. Следовательно, угол 60°.г)(угол между стороной и диагональюквадрата).д)е)Пусть О — точка пересечения диагоналей В1С и ВС1,квадрата ВВ1С1С.следовательно,ж)следовательно,з)следовательно, угол между ними равен 180°Не знаете как решить? Можете с решением? Заходите и спрашивайте.
4,7(35 оценок)
Ответ:
MrMut222
MrMut222
27.09.2021
Поскольку даны координаты только 2-х вершин, задача имеет два решения, так как квадрат может быть построен симметрично относительно стороны АВ..
Найдем длину стороны квадрата.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.Значит длина стороны квадрата равна √[(Хb-Xa)²+(Yb-Ya)²] =√29.
Мы знаем, что диагонали квадрата равны произведению его стороны на √2, то есть = √58 и в точке деления делится пополам. Итак, мы имеем два уравнения: (1)√[(Хd-Xa)²+(Yd-Ya)²] =√29 - для длины |АВ| квадрата и (2)√[(Хd+Xb)²+(Yd+Yb)²] =√58 для длины |ВD|его диагонали. Решим систему из двух уравнений и найдем координаты вершины D(Xd;Yd).
(1) √[(Хd-Xa)²+(Yd-Ya)²] =√29 или (Хd+2)²+(Yd-1)²=29 или Хd²+4Хd+Yd²-2Yd=24.
(2) √[(Хd-Xb)²+(Yd+Yb)²] =√58 или (Хd-3)²+(Yd-3)²=58 или Хd²-6Хd+Yd²-6Yd=40.
Из (1) вычтем (2):10Xd+4Yd=-16. Yd=-(5Xd+8)/2.
Подставляем это значение в (1):
4Хd²+16Xd+25Xd²+80Xd+64+20Xd+32=96 или 29Хd²+116Xd=0 или Хd²+4Xd=0. Отсюда Xd1=0 и Xd2=-4. Соответственно Yd1=-4, а Yd2=6.
Итак, мы получили координаты вершины D: D1(0;-4) и D2(-4;6).
Мы помним, что диагонали квадрата делятся в точке пересечения пополам. Найдем координаты середины диагонали BD. Координаты этой точки равны половине суммы координат начала и конца отрезка (вектора) BD: (0+3)/2=1,5 и (-4+3)/2= -0,5.
Итак, имеем точку пересечения диагоналей: О1(1,5;-0,5) и аналогично О2(-0,5;4,5).
Зная эти координаты, найдем координаты точки С (так как нам известны координаты начала и середины отрезка АС.
(Хс+Xa)/2=Xo и (Yc+Ya)/2=Yo. Отсюда имеем: Хс1=5 и Yc1=-2.
Xc2=1, Yc2=8.
ответ:координаты вершин квадрата: С1(5;-2), D1(0;-4) и C2(1;8),D2(-4;6).

Вквадрате abcd, a(-2; 1) и в(3; 3).найдите координаты других вершин квадарата
4,4(2 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ