При пересечении двух прямых получается четыре угла . Два из них развернутые и они равны по 180 градусов. Всего сумма 4 углов 360 градусов. Один угол равен 360-305=55 Углы накрест лежащие и они равны. Следовательно два остальных накрест лежащих угла (360-55*2)/2=125 Дано прямые АВ и СК точка О точка пересечения прямых угол АОК =180 (развернутый) АОК =АОС+АОК угол СОК = 180 СОК =СОВ+ВОК АОС+АОК+СОВ=305 ВОК=360-305=55 ВОК=АОС=55 (накрест лежащие) АОК=СОВ=(360-55*2)/2=125 (накрест лежащие)
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301