лежит на биссектрисе , так как и у большего треугольника
центр так же лежит на биссектрисе , получаем что
проходит через оба центра .
меньшего и большего соответственно , получим их прямоугольных треугольников
так как
.
MK - общая касательная двух окружностей. N - точка пересечения BC и MK.
1) Прямоугольные треугольники BMN и MKA имеют равные углы, то есть подобны. Поскольку радиусы вписанных окружностей у них равны, эти треугольники равны между собой. То есть BM = MK.
2) Треугольник MKA подобен исходному треугольнику ABC, но его радиус r1 вписанной окружности в √2 меньше (радиусы связаны по условию 2*π(r1)^2 = πr^2).
отсюда и стороны MKA в √2 раз меньше сторон ABC.
Если обозначить AB = c; AC = b; BC = a; ∠CAB = α; то
MK = a/√2; BM = AB - AM = c - b/√2;
Отсюда a/c + b/c = √2; или sin(α) + cos(α) = √2;
Если возвести это в квадрат, получится sin(2α) = 1; то есть α = π/4;