Т.к. один из острых углов прямоугольного треугольника равен 45°, то и второй острый угол этого треугольника тоже равен 45°, а сам треугольник является равнобедренным ( гипотенуза является основанием равнобедренного треугольника, а катеты являются бедрами этого равнобедренного треугольника и соответственно равны друг другу )
Пусть а и b - катеты треугольника, а с - его гипотенуза. Так как в нашем случае катеты равны, то по теореме Пифагора с² = 2а²
Площадь же данного треугольника можно найти по формуле S = a*b/2
Так как в данном треугольнике катеты равны друг другу, то формула площади треугольника примет вид S = a²/2 = c²/4
Подставим численное значение длины гипотенузы в полученную формулу и найдём площадь треугольника:
S = c²/4 = 20²/4 = 400/4 = 100
Площадь данного прямоугольного треугольника равна 100.
Объяснение:
прямоугольник ABCD
CD =
AD = 0,7
Найти:
BD — ?
https://tex.z-dn.net/?f=c%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20%5C%5C%5C%5Cc%5E2%20%3D%20(%5Csqrt%7B0%2C95%7D)%5E2%20%2B%200%2C7%5E2%5C%5Cc%5E2%20%3D%200%2C95%20%2B%200%2C49%5C%5C%20c%5E2%20%3D%201%2C44%5C%5Cc%20%3D%20%5Csqrt%7B1%2C44%7D%5C%5Cc%20%3D%201%2C2
Так как ABCD — прямоугольник, то AB = CD = , AD = BC = 0,7.
BD — гипотенуза прямоугольного треугольника ABD, поэтому найдём её через формулу теоремы Пифагора.
По теореме Пифагора получаем:
Значит, BD = 1,2
рисуем трапецию ABCD, где АВ=ВС=10, угод CDA=45
из вершины С опускаем высоту СН на основание AD. рассматриваем треугольних ADC, он равнобедренный, тк угол D = углу CHD = 45
DH=СН=АВ=10см
но так же АВСН-квадрат со сторонами 10 см
получается основание AD = 20 см