а). (59°; 59°; 62) или (56°; 62°; 62°) ;
б). (41°; 41°; 98°) .
а). Один из углов равен 62°.
В равнобедренном треугольнике по крайней мере два равных угла. Сумма всех углов - 180°. Если угол в 62° - "единственный в своем роде", то каждый из двух других равных углов будет равен:
(180° - 62°) : 2 = 118° : 2 = 59°.
Если же существуют два таких угла, то оставшийся угол равен:
180° - 62° * 2 = 180° - 124° = 56° градусов.
Оба исхода имеют место быть.
Углы искомого треугольника: (59°; 59°; 62) или (56°; 62°; 62°).
б). Один из углов равен 98°.
В равнобедренном треугольнике не может быть два угла по 98°, так как 98° * 2 = 196° > 180°.
Если угол в 98° единственен, то каждый из оставшихся углов равен:
(180° - 98°) : 2 = 82° : 2 = 41°.
Углы искомого треугольника: (41°; 41°; 98°).
Задача решена!
12
Объяснение:
Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.