1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
Дано: AB = 12см
BC = 13см
AC = 20см
A₁B₁ = 9см
Найти: B₁C₁
A₁C₁
По третьему признаку подобия треугольников: Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то они подобны.
Если \frac{AB}{A_1B_1}= \frac{BC}{B_1C_1}=\frac{AC}{A_1C_1}
A
1
B
1
AB
=
B
1
C
1
BC
=
A
1
C
1
AC
, то Δ ABC ~ Δ A₁B₁C₁
Подставим значения сторон треугольника, которые уже знаем
\begin{gathered}\frac{12}{9}= \frac{13}{B_1C_1}=\frac{20}{A_1C_1}frac{4}{3}= \frac{13}{B_1C_1}=\frac{20}{A_1C_1}\end{gathered}
9
12
=
B
1
C
1
13
=
A
1
C
1
20
3
4
=
B
1
C
1
13
=
A
1
C
1
20
Теперь найдём стороны B₁C₁ и A₁C₁
B_1C_1=13:\frac{4}{3}=13*\frac{3}{4}=\frac{39}{4}=9\frac{3}{4}=9,75B
1
C
1
=13:
3
4
=13∗
4
3
=
4
39
=9
4
3
=9,75
A_1C_1=20:\frac{4}{3}=20*\frac{3}{4}=\frac{60}{4}=15A
1
C
1
=20:
3
4
=20∗
4
3
=
4
60
=15
ответ: A₁B₁ = 9см
B₁C₁ = 9,75см
A₁C₁ = 15см