a -?, b=18 - стороны параллелограмма Hb=15 - высота на сторону b Ha=9 - высота на сторону a Формулы длины высоты параллелограмма, через сторону и угол: На=b*sinα, sinα=На:b=9:18=1/2 Hb=a*sin α, а=Нb:sin α=15:1/2=30
Площадь параллелограмма равна произведению стороны на высоту к ней проведённую, значит S=a·h S=18·15 или S=a·9, значит 18·15=а·9 270=а·9 а=270:9 а=30 ответ:30 см
Дано: АВСД - ромб; Sавсд = 48 см квадратных; О - середина АВ, К - середина ВС, М - середина СД, Н - середина СД. Найти: S окмн - ? Решение: 1) Sавсд = 1/2 * АС * ВД (АС и ВД - диагонали ромба) 48 = 1/2 * АС * ВД, АС * ВД = 48 * 2; АС * ВД = 96; 2) ОК - средняя линия треугольника АВС, КМ - средняя линия треугольника ВСД, НМ - средняя линия треугольника АСД и НО - средняя линия треугольника АВД. Тогда ОНМК - прямоугольник стороны которого равны половинам диагоналей. Тогда S = (1/2)ВД *(1/2) АС= (1/4) * 96 = 96/4 = 24 см квадратных. ответ: 24 см квадратных.
Проведём высоты СР и ДМ к основанию АВ. ДМ=СР. АМ+ВР=АВ-МР=АВ-СД=27-18=9 см. Пусть АМ=х, тогда ВР=9-х. В тр-ке АДМ ДМ²=АД²-АМ²=9-х². В тр-ке ВСР СР²=ВС²-ВР²=(6√2)²-(9-х)²=72-81+18х-х²=18х-9-х². 9-х²=18х-9-х², 18х=18, х=1. АМ=1 см. ДМ²=9-1=8, ДМ=2√2 см. К основаниям трапеции через точку К проведём перпендикуляр НТ. НТ=ДМ. По свойству трапеции треугольники АКВ и СКД подобны, значит АВ/СД=ТК/НК. Пусть ТК=у, тогда НК=2√2-у. 27/18=у/(2√2-у), 54√2-27у=18у, 45у=54√2, у=1.2√2. ТК=1.2√2 см. S(АВД)=АВ·ДМ/2=27·2√2/2=27√2 см². S(АКВ)=АВ·ТК/2=27·1.2√2/2=16.2√2 см². S(АКД)=S(АВД)-S(АКВ)=27√2-16.2√2=10.8√2 см² - это ответ.
Hb=15 - высота на сторону b
Ha=9 - высота на сторону a
Формулы длины высоты параллелограмма, через сторону и угол:
На=b*sinα,
sinα=На:b=9:18=1/2
Hb=a*sin α,
а=Нb:sin α=15:1/2=30