М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Пеннивайз2000
Пеннивайз2000
05.02.2023 21:13 •  Геометрия

Вравнобедренном треугольнике abc с боковыми сторонами ac и bc проведены высота bh и медиана am, которые пересекаются в точке p. определите длину стороны ab, если известно, что ap=5, pm=10.

👇
Ответ:
alenavasipenok
alenavasipenok
05.02.2023
Дан равнобедренный ΔАСВ: С - вершина, боковые стороны АС=СВ
На продолжении медианы АМ за точку М отложим отрезок МК, равный АМ. АМ=МК=15, РК=РМ+МК=10+15=25
 Полученный четырехугольник АСКВ-параллелограмм, т.к. его диагонали АК иВС точкой пересечения М делятся пополам (ВМ=МС и АМ=МК).
Пусть АС=СВ=ВК=х, тогда 
ΔАРН подобен ΔВРК по двум углам (угол АРН=углу ВРК, угол АНР=ВРК=90), тогда АР/РК=5/25=1/5 и АН/ВК=НР/РВ=1/5
Отсюда АН=ВК/5=х/5
Из прямоугольного ΔВРК  РВ²=РК²-ВК²=25²-х²=625-х²
РВ=√(625-х²)
Т.к. НР/РВ=1/5, НР=РВ/5=1/5√(625-х²)
НВ=РВ+НР=√(625-х²)+1/5√(625-х²)=6/5√(625-х²)
Из прямоугольного ΔАВН  
АВ²=НВ²+АН²=(6/5√(625-х²))²+х²/25=(36(625-х²)+х²)/25
 
В параллелограмме D²+d²=2(a²+b²), значит 
АК²+СВ²=2(АС²+АВ²) или АК²+АС²=2АС²+2АВ² 
30²=АС²+2АВ²,  
АВ²=(30²-х²)/2=(900-х²)/2
Приравниваем АВ²:
(36(625-х²)+х²)/25=(900-х²)/2
2(36(625-х²)+х²)=25(900-х²)
45000-72х²+2х²=22500-25х²
22500=45х²
х²=500
тогда АВ²=(900-х²)/2=(900-500)/2=200
АВ=√200=10√2
4,4(40 оценок)
Открыть все ответы
Ответ:
Vladko1337lol
Vladko1337lol
05.02.2023

Якщо ще актуально)

Дано: ABCD - паралелограм, АС - діагональ, ВН⟂АС, АН= 6 см, СН= 15 см, ВС–АВ= 7 см.

Знайти: S abcd.

Розв'язання.

Розглянемо трикутники АНВ і СНВ.

Вони прямокутні, а сторона ВН для них є спільним катетом. АН= 6 см, СН= 15 см, тому очевидно, що ВС>АВ.

Нехай АВ= х см, тоді ВС= (х+7) см.

Оскільки ВН - спільна сторона, тоді справедлива така рівність (через т.Піфагора у ΔAHB і ΔCHB):

АВ²–АН²= ВС²–НС²;

х²–6²= (х+7)²–15²;

х²–6²= х²+14х+49–225;

х²–х²–14х= 36+49–225;

–14х= –140;

14х= 140;

х= 10 (см)

Отже, АВ= 10 см, тоді:

ВН²= х²–6²= 10²–6²= 100–36= 64;

ВН= 8 см (–8 не може бути)

Розглянемо ΔABC:

AC= AH+HC= 6+15= 21 см

ВН= 8 см, ВН - висота ΔABC, оскільки ВН⟂АС.

Знайдемо площу ΔАВС:

S= ½•AC•BH;

S= ½•21•8= 84 (см²).

Діагоналі паралелограма ділять його на два рівних трикутники, тобто їх площі рівні.

SΔABC= SΔCDA= 84 см²

Звідси площа паралелограма ABCD дорівнює

S abcd= 2•SΔABC= 2•84= 168 (см²).

Відповідь: 168 см².


Перпендикуляр, проведений з вершини паралелограма до його діагоналі, ділить її на відрізки довжиною
4,5(18 оценок)
Ответ:
mariyburova2001
mariyburova2001
05.02.2023

Якщо ще актуально)

Дано: ABCD - паралелограм, АС - діагональ, ВН⟂АС, АН= 6 см, СН= 15 см, ВС–АВ= 7 см.

Знайти: S abcd.

Розв'язання.

Розглянемо трикутники АНВ і СНВ.

Вони прямокутні, а сторона ВН для них є спільним катетом. АН= 6 см, СН= 15 см, тому очевидно, що ВС>АВ.

Нехай АВ= х см, тоді ВС= (х+7) см.

Оскільки ВН - спільна сторона, тоді справедлива така рівність (через т.Піфагора у ΔAHB і ΔCHB):

АВ²–АН²= ВС²–НС²;

х²–6²= (х+7)²–15²;

х²–6²= х²+14х+49–225;

х²–х²–14х= 36+49–225;

–14х= –140;

14х= 140;

х= 10 (см)

Отже, АВ= 10 см, тоді:

ВН²= х²–6²= 10²–6²= 100–36= 64;

ВН= 8 см (–8 не може бути)

Розглянемо ΔABC:

AC= AH+HC= 6+15= 21 см

ВН= 8 см, ВН - висота ΔABC, оскільки ВН⟂АС.

Знайдемо площу ΔАВС:

S= ½•AC•BH;

S= ½•21•8= 84 (см²).

Діагоналі паралелограма ділять його на два рівних трикутники, тобто їх площі рівні.

SΔABC= SΔCDA= 84 см²

Звідси площа паралелограма ABCD дорівнює

S abcd= 2•SΔABC= 2•84= 168 (см²).

Відповідь: 168 см².


Перпендикуляр, проведений з вершини паралелограма до його діагоналі, ділить її на відрізки довжиною
4,4(24 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ