Пусть а=7, b=6 - стороны параллелограмма, обозначим диагональ d₁=x, тогда d₂=16-x Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂² 2·7² + 2· 6²=х²+(16-х)² решаем квадратное уравнение: 98+72=х²+256-32х+х², х²-16х+43=0, D=b²-4ac=16²-4·43=256-172=84 x₁=8- √21 x₂=8+√21 если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21 если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21 тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21) h=6·sinα=6√(5/21)
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
Пусть ABCD -трапеция , AD || BC , BC< AD ; P(ABCD) =20 ,S((ABCD) =20 . трапецию можно вписать окружность; MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O). M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции . По условию задачи трапеция описана окружности , следовательно : AD+BC =(AB +CD) = P/2 =20/2 =10. AB =CD =5 ; S =(AB +BC) /2 *H ; 20 =5*H ⇒ H =4. Проведем BE ⊥AD и CF ⊥ AD, AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 . AD -BC =2*3 =6. { AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2. ΔAOD подобен ΔCOB : BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) . 2/8 =ON/ (4 -ON) ⇒ON =0,8.
d₁=x, тогда d₂=16-x
Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂²
2·7² + 2· 6²=х²+(16-х)²
решаем квадратное уравнение:
98+72=х²+256-32х+х²,
х²-16х+43=0,
D=b²-4ac=16²-4·43=256-172=84
x₁=8- √21 x₂=8+√21
если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21
если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21
тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21)
h=6·sinα=6√(5/21)