1 Это ответ :) На самом деле тут нужна теория. 1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1. С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1. Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O. Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C. Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1. Само собой, плоскости AB1D1 и BDC1 параллельны. 2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1. Тогда из параллельности плоскостей AB1D1 и BDC1 AO/OO1 = A1M1/M1C1 = 1; CO1/OO1 = CM/MA = 1; То есть все три отрезка A1O = OO1 = CO1. Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям). Вот, теория закончилась. Дальше решение :) A1C = 3, => OO1 = 1;
Построение треугольника: 1) Проведём прямую a. 2) Построим перпендикулярную к ней прямую b: -Проведём окружность произвольного радиуса с центром в произвольной точке (в нашем случае ,в точке О) так,что она пересечёт прямую a в точках M и N; -Проведём две окружности радиуса MN с центрами в точках M и N так,что они пересекутся в двух точках F и S; -Проведём прямую b через точки F и S; точки F,O,S лежат на одной прямой b; -a⊥b. 3)Проведём окружность произвольного радиуса с центром в точке О так,что она пересечёт прямые a и b в двух точках каждую;нам нужны лишь две : A и B (A∈a,B∈b) 4)Соединим точки A и B. 5) AOB -- прямоугольный равнобедренный треугольник.
Прямой угол можно построить и с циркуля!
Поворот вокруг вершины B на 90 градусов: 1) Транспортиром откладываваем два прямых угла: один от точки B для от прямой a,другой от этой же точки,но для прямой AB -- прямые a и c образуют угол в 90°,AB и d так же. 2) Раствором циркуля берём расстояние BO и переносим его на прямую c,откладывая от точки B;отмечаем точку O'. Затем берём расстояние AB и откладываем на прямой d от точки B его же,отметив точку A'. AB=A'B,OB=O'B. Соединим точки: B с O',O' с A',A' с B 3) A'O'B -- образ треугольника AOB при повороте на 90 градусов по часовой стрелке вокруг точки B.
Построение треугольника: 1) Проведём прямую a. 2) Построим перпендикулярную к ней прямую b: -Проведём окружность произвольного радиуса с центром в произвольной точке (в нашем случае ,в точке О) так,что она пересечёт прямую a в точках M и N; -Проведём две окружности радиуса MN с центрами в точках M и N так,что они пересекутся в двух точках F и S; -Проведём прямую b через точки F и S; точки F,O,S лежат на одной прямой b; -a⊥b. 3)Проведём окружность произвольного радиуса с центром в точке О так,что она пересечёт прямые a и b в двух точках каждую;нам нужны лишь две : A и B (A∈a,B∈b) 4)Соединим точки A и B. 5) AOB -- прямоугольный равнобедренный треугольник.
Прямой угол можно построить и с циркуля!
Поворот вокруг вершины B на 90 градусов: 1) Транспортиром откладываваем два прямых угла: один от точки B для от прямой a,другой от этой же точки,но для прямой AB -- прямые a и c образуют угол в 90°,AB и d так же. 2) Раствором циркуля берём расстояние BO и переносим его на прямую c,откладывая от точки B;отмечаем точку O'. Затем берём расстояние AB и откладываем на прямой d от точки B его же,отметив точку A'. AB=A'B,OB=O'B. Соединим точки: B с O',O' с A',A' с B 3) A'O'B -- образ треугольника AOB при повороте на 90 градусов по часовой стрелке вокруг точки B.
Это ответ :)
На самом деле тут нужна теория.
1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1.
С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1.
Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O.
Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C.
Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1.
Само собой, плоскости AB1D1 и BDC1 параллельны.
2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1.
Тогда из параллельности плоскостей AB1D1 и BDC1
AO/OO1 = A1M1/M1C1 = 1;
CO1/OO1 = CM/MA = 1;
То есть все три отрезка A1O = OO1 = CO1.
Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям).
Вот, теория закончилась. Дальше решение :)
A1C = 3, => OO1 = 1;