Найти площадь треугольника, вписанного в окружность, если концы его стороны, равной 20 см, отстают от касательной, проведенной через противоположную вершину на 25 см и 16 см.
Площадь треугольника можно найти как половину произведения стороны на высоту, проведенную к этой стороне))) сторона треугольника дана, осталось найти высоту (ВН)... построив данные расстояния в 16 (МА) и 25 (КС) см (а это перпендикуляры к касательной))), мы получим трапецию АМКС... рассмотрев получившиеся прямоугольные треугольники, можно заметить, что среди них есть подобные))) т.к. угол между касательной и секущей, проведенной через точку касания, равен половине дуги, заключенной между сторонами этого угла, получим: угол МВА = 0.5*(дугу АВ) и про вписанный в окружность угол известно, что он равен половине дуги, на которую он опирается, ---> МВА = ВСА (углы равны) аналогично рассуждая, получим: КВС = ВАС (углы равны) ---> треугольники МВА и НВС подобны ((как прямоугольные с равными острыми углами))), аналогично, подобны треугольники КВС и АВН... из подобия можно записать: МА / ВН = АВ / ВС и из второго подобия: КС / ВН = ВС / АВ получим: МА / ВН = ВН / КС ВН*ВН = МА*КС = 25*16 ВН = 5*4 = 20 S(ABC) = BH*AC/2 = 20*20/2 = 200
Теорема: касательная к окружности перпендикулярна к радиусу,проведённому в точку касания.
доказательство: пусть р- касательная к окружности с центром O,A -точка касания. докажем что р перендикулярна к радиусу AO
Предположим, что это не так. тода радиус OA является наклонной к прямой р. Так как перпендикуляр,проведенный из точки O к прямой р ,меньше наклонной OA, то расстояние от центра O окружности до прямой р меньше радиуса. Следовательно, прямая р и окружность имеют две общие точки. Но это протеворечит условию: прямая р- касательная
Таким образом, прямая р перепендикулярна к радиусу OA
А)r=ab/2=12 см б) проведем высоту cl , из прямоугольного треугольника cld ld²=cd²-ab²=25²-24²=49 ld=7 если в четырехугольник вписана окружность,то сумма его противоположных сторон равна . ab+cd=bc+ad bc+ad=49 ad=bc+ld bc+bc+ld=49 2bc+7=49 bc=21 ad=49-21=28 в)проведем радиус qf ,точка f лежит на прямой cd qf является высотой т. к. касательная к окружности перпендикулярна радиусу. отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность kc=cf=bc-r=21-12=9 ed=ef=ad-r=28-12=16 qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу qf²=16*9 12²=16*9 144=144 следовательно треугольник cdq прямоугольный
построив данные расстояния в 16 (МА) и 25 (КС) см
(а это перпендикуляры к касательной))), мы получим трапецию АМКС...
рассмотрев получившиеся прямоугольные треугольники, можно заметить, что среди них есть подобные)))
т.к. угол между касательной и секущей, проведенной через точку касания, равен половине дуги, заключенной между сторонами этого угла, получим:
угол МВА = 0.5*(дугу АВ)
и про вписанный в окружность угол известно, что он равен половине дуги, на которую он опирается, ---> МВА = ВСА (углы равны)
аналогично рассуждая, получим: КВС = ВАС (углы равны)
---> треугольники МВА и НВС подобны ((как прямоугольные с равными острыми углами))), аналогично, подобны треугольники КВС и АВН...
из подобия можно записать: МА / ВН = АВ / ВС и из второго подобия:
КС / ВН = ВС / АВ
получим: МА / ВН = ВН / КС
ВН*ВН = МА*КС = 25*16
ВН = 5*4 = 20
S(ABC) = BH*AC/2 = 20*20/2 = 200