Я в другом месте Вам выложил векторное решение, а тут - простое и элементарное:)
При повороте на 90 градусов вокруг общей для двух квадратов вершины В стороны квадратов переходят "в себя" - точнее, сторона ВС переходит в ВР, а сторона МВ - в АВ. Или, что то же самое - точка С переходит в Р, а точка М - в А.
Удивительным образом отсюда сразу следует ответ :)
В самом деле, получается, что в четырехугольнике АМРС про повороте на 90 градусов диагональ МС переходит в диагональ АР. То есть они равны и перпендикулярны :)
А стороны искомой фигуры соединяют середины соседних сторон четырехугольника АМРС, поэтому равны половинам диагоналей и параллельны им (например, О1К - средняя линяя в треугольнике АМС, поэтому она параллельна МС и равна её половине, и так все 4 стороны четырехугольника О1LO2K).
Поэтому четырехугольник О1LO2K - квадрат :)
У Прасолова в его сложнейшем задачнике эта задача помечена * (особой сложности :)) У него приведено векторное решение, похожее на которое (более понятное) я выложил тут в другом месте. Но это решение, по-моему, снимает все вопросы.
Раз трапеция равнобедренная, то и диагонали равны (ну рассмотрите пару треугольников, образованных РАЗНЫМИ ДИАГОНАЛЯМИ, большим основанием и боковой стороной, из их равенства по 2 сторонам и углу между ними следует и равенство третьих сторон, то етсь диагоналей).
Типовое построение - проводим через вершины малого основания прямую II диагонали, НЕ проходящей через эту вершину, до пересечения с продолжением большого основания. Получается треугольник, РАВНОВЕЛИКИЙ (имеющий ту же площадь) трапеции (у него основание равно сумме оснований трапеции, а высота - общая с трапецией).
Этот треугольник В ДАННОМ СЛУЧАЕ равнобедренный прямоугольный с гипотенузой 64. Поэтому его площадь равна 32*64/2 = 1024
(32 - это высота, она же медиана к гипотенузе, равна половине гипотенузы)
По обратной теореме Фалеса: Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны.
Подробно:
Прямые А1В1, А2В2, А3В3 пересекают две другие прямые ОА и ОВ и образуют с ними треугольники с вершиной О. Эти треугольники подобны по общему углу О и пропорциональным сторонам. Поэтому соответственные углы А1, А2, А3 при пересечении прямых А1В1, А2В2, А3В3 секущей ОА и соответственные углы В1, В2, В3 при пересечении тех же прямых секущей ОВ равны.
Если соответственные углы, образованные при пересечении двух прямых секущей равны, то такие прямые параллельны.
Согласно этому признаку параллельности прямых А1В1 параллельна А2В2 и параллельна А3В3. Аналогично А2В2 параллельна А3В3, что и требовалось доказать.