Двугранные углы при основании пирамиды равны. основанием пирамиды является квадрат со стороной 8 см. высота пирамиды равна 3 см. найти площадь боковой поверхности пирамиды
Если все двугранные углы при ребрах основания равны, то вершина пирамиды проецируется в центр вписанной в основание окружности, то есть в центр квадрата (основания). Итак, пирамида правильная. Тогда из прямоугольного треугольника (высота и половина основания - катеты, а апофема - гипотенуза) по Пифагору находим эту апофему. Она равна √(9+16) = 5 (эту величину можно найти без вычислений, так как треугольник пифагоров: стороны его 3,4 и 5) Тогда одной площадь грани равна половина стороны основания, умноженная на апофему: 5*4=20см. А площадь боковой поверхности пирамиды (это 4 равных грани) равна 20*4 =80см².
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).