Любые три точки, не лежащие на одной прямой, можно соединить в треугольник. Соединив А, В, С - получим треугольник, вписанный в данную окружность. Хорда ВС - сторона этого треугольника. Сторону ВС можно вычислить по теореме синусов. ВС:sin (45)=2R ВС=2R*sin (45°) ВС=16*(√2/2)=8√2 Где бы ни располагалась точка А, угол САВ, как вписанный и равный 45°, будет равен половине центрального угла, а хорда, стягивающая дугу этого угла, будет одинаковой длины. Следовательно, треугольник АВС может быть как разносторонним, так и равнобедренным, угол ВАС - опираться на диаметр АС, который равен 16. d=a√2=16 ВС=a=8√2
За точку обозначим А, перпендикуляр к плоскости- АВ, наклонная-АС. пусть АВ=х, тогда АС=2х найдем проекцию наклонной. проекция точки А является В, проекция точки С является С, тогда проекция наклонной АС является ВС. рассмотрим треугольник АВС-прямоугольный(В=90), АВ-катет, АС-гипотенуза, в два раза большая катета, следовательно по свойству - если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то угол противолежащий угол равен 30 градусам. т.е. угол АСВ=30 градусов. а угол между накл и ее проекцией и есть угол АСВ
Соединив А, В, С - получим треугольник, вписанный в данную окружность. Хорда ВС - сторона этого треугольника.
Сторону ВС можно вычислить по теореме синусов.
ВС:sin (45)=2R
ВС=2R*sin (45°)
ВС=16*(√2/2)=8√2
Где бы ни располагалась точка А, угол САВ, как вписанный и равный 45°, будет равен половине центрального угла, а хорда, стягивающая дугу этого угла, будет одинаковой длины.
Следовательно, треугольник АВС может быть как разносторонним, так и равнобедренным, угол ВАС - опираться на диаметр АС, который равен 16. d=a√2=16
ВС=a=8√2