Пусть АВСD - данный ромб. АС = 16 см, ВD = 12 см. О - точка пересечения диагоналей и центр вписанной окружности.
1. Из треугольника АОВ находим сторону ромба.
АО = ½ АС = 8 см, ВО = ½ ВD = 6 см - (свойство диагоналей параллелограма).
АВ² = АО²+ВО² - (теорема Пифагора)
АВ = 10 см
2. В точку касания окружности к стороне АВ (обозначим ее К) проводим радиус ОК. ОК перпендикулярно АВ.
3. Рассмотрим два прямоугольных треугольника АКО и ВКО.
По теореме Пифагора:
ОК² = АО² - АК²
ОК² = ВО² - КВ²
4. Приравниваем правые части полученных равенств, так как левые равны.
АО² - АК² = ВО² - КВ²
Пусть АК = х, тогда КВ = 10 -х. Имеем:
64 - х² = 36 - (10 - х)²
64 - х² - 36 + 100 - 20х + х² = 0
20х = 128
х = 6,4
АК = 6,4 см.
5. Из равенства ОК² = АО² - АК² находим радиус.
ОК² = 64 - 40,96 = 23,04
ОК = 4,8 см.
ответ. 4,8 см.
AM = 6 см; MB = 8 см.
Объяснение:
Известен такой факт: при пересечении двух хорд образуется точка, которая делит хорды таким образом, что произведение отрезков одной хорды равно произведению отрезков другой. То есть в данном случае AM * MB = CM * MD (1). Также имеем второе уравнение CD = CM + MD = 16 см => MD = 16 см - 4 см = 12 см. Т.к. AM/MB = 3/4 => AM = 3/4*MB (2). Подставим все, что известно в (1), используя (2):
3/4*MB*MB = 3/4*MB² = 4 * 12 => MB = √(4/3*4*12) = 8 см.
Далее из (2) найдем AM:
AM = 3/4*8 = 6 см.
Проверка:
AM*MB = 6*8 = 48; CM*MD = 4*12 = 48. То есть AM*MB = CM*MD. Решение найдено верно.
Отношение большей к меньшей равно 6/4, равно 1.5
При вращении треугольника вокруг одного из катетов мы получаем конус, в основе которого будет лежать круг, с радиусом, равным второму катету.
Найдем длину круга при вращении вокруг катета длинной в 2 см:
C=2πr = 2 × 3 × π = 6π см
Тогда, площадь боковой поверхности будет равна произведению длинны окружности на длину гипотенузы треугольника. (Находим по Т. П)
S бок пов = 6π × √13 (длина гипотенузы) = 6π√13 см²
Проделав тоже самое для конуса, полученного при вращении вокруг катета длиной 3 см мы найдем S бок пов2 (4π√13)
А теперь делим одно и на другое. Получается: 6π√13/4π√13 = 1.5
r=d1*d2/(4a),
где d1 и d2 - диагонали ромба
a - сторона
a^2=(d1/2)^2+(d2/2)^2
a^2=(12/2)^2+(16/2)^2=6^2+8^2=36+64=100
a=sqrt(100)=10 - сторона ромба,
тогда
r=12*16/(4*10)= 192/40=4,8