Обозначения. Треугольник ABC AC = 10; BC = 24; AB = 26; О - точка пересечения медиан, M - середина AB; N - середина AC; K - середина BC; Прежде, чем решать, я найду длины медиан и площадь треугольника. Площадь S = 10*24/2 = 120; AK^2 = 10^2 + 12^2 = 244; AK = 2√61; BN^2 = 5^2 + 24^2 = 601; BN = √601; CK = AB/2 = 13; Теперь решение. Расстояния от точки O до вершин равно 2/3 медиан. AO = AK*2/3 = 4√61/3; BO = BN*2/3 = 2√601/3; CO = CM*2/3 = 26/3; Расстояние от O до катетов очевидно равно 1/3 другого катета. Это видно из проекций точек M и O на катеты (M проектируется в середину катета, а проекция CO равна 2/3 проекции CM); но для систематического решения лучше рассуждать так. Площади треугольников BOC; BOA; AOC равны S/3 = 40; поэтому искомые расстояния от точки O до сторон равны (S/3)*2/(сторона); до AC: ... = 40*2/10 = 8; до BC: ... = 40*2/24 = 10/3; до AB: ... = 40*2/26 = 40/13; таким находятся все три расстояния
3.В параллелограмме сумма 2-х соседних углов= 180 гр.Делаем вывод,что нам дана сумма противоположных углов.150/2=75 гр один угол.По указанному выше свойству 180-75=105 гр-второй угол.ответ:75,75,105,105 4.Это параллелограммы,т.к. АB||KL,АК||BL и KL||CD ,KD||LC.Противоположные стороны попарно параллельны,это признак параллелограмма. 3.Пусть один из углов=х,тогда другой будет 3х. х+3х=180.4х=180 х=45,3х=135.ответ:45,45,135,135 4.В данном четырехугольнике диагонали равны диаметру,значит,равны между собой.Точкой пересечения делятся пополам.Это признак прямоугольника. 3.Пусть одна из сторон х.Периметр=2х+2*8=36 2х=20 х=10 ответ:8,10,10 4.В данном четырехугольнике диагонали равны диаметру и равны между собой,пересекаются под прямым углом и точкой пересечения делятся пополам.Это признак квадрата.
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
Треугольник ABC AC = 10; BC = 24; AB = 26;
О - точка пересечения медиан, M - середина AB; N - середина AC; K - середина BC;
Прежде, чем решать, я найду длины медиан и площадь треугольника.
Площадь S = 10*24/2 = 120;
AK^2 = 10^2 + 12^2 = 244; AK = 2√61;
BN^2 = 5^2 + 24^2 = 601; BN = √601;
CK = AB/2 = 13;
Теперь решение.
Расстояния от точки O до вершин равно 2/3 медиан.
AO = AK*2/3 = 4√61/3; BO = BN*2/3 = 2√601/3; CO = CM*2/3 = 26/3;
Расстояние от O до катетов очевидно равно 1/3 другого катета. Это видно из проекций точек M и O на катеты (M проектируется в середину катета, а проекция CO равна 2/3 проекции CM);
но для систематического решения лучше рассуждать так.
Площади треугольников BOC; BOA; AOC равны S/3 = 40;
поэтому искомые расстояния от точки O до сторон равны (S/3)*2/(сторона);
до AC: ... = 40*2/10 = 8; до BC: ... = 40*2/24 = 10/3; до AB: ... = 40*2/26 = 40/13;
таким находятся все три расстояния