Впрямоугольном треугольнике авс с прямым углом в, проведены вн – высота, ам – медиана, которые пересекаются в точке р. определить длину ав, если вр=10, рн=2.
Проведем перпендикуляр MQ||BH||PH. То MQ-cредняя линия треугольника BHC. MQ=BH/2=6. (HQ=QC) Треугольники AMQ и APH подобны. По теореме высоты: AH*HC=144 то если AH=x HC=144/x , HQ=144/2x Далее все на рисунке. ответ:6sqrt(5)
Пирамида имеет в основании квадрат или правильный треугольник?
1. поверхность грани 96/4=24 длина стороны основания 24/4=6 апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8 0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально - пусть n боковых граней, s = 96/n сторона основания 24/n 0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
Треугольники AMQ и APH подобны.
По теореме высоты: AH*HC=144
то если AH=x HC=144/x , HQ=144/2x
Далее все на рисунке.
ответ:6sqrt(5)