Если из одной точки провести касательные к одной окружности, то отрезки касательных до точек касания будут равны. Поэтому гипотенуза будет 3+10=13/см/, один из катетов 3+х, другой катет равен 10+х.
По теореме ПИфагора (3+х)²+(10+х)²=13²
9+6х+х²+100+20х+х²=169
2х²+26х-60=0; х²+13х-30=0; По теореме, обратной теореме Виета, корни этого уравнения равны х₁=2; х₂=-15 - не подходит по смыслу задачи. Значит, один катет равен 2+3=5/см/, а другой 10+2=12см. Площадь треугольника равна половине произведения катетов, т.е.
5*12/2=30/см²/
Объяснение:
Сумма острых углов прямоугольного треугольника составляет 90° поэтому величина второго острого угла=90-60=30°
Катет, лежащий против угла 30°, равен половине гипотенузы. Обозначим длину гипотенузы х, тогда длина короткого катета 0,5х см. Составим уравнение: х+0,5х=18; 1,5х=18; х=12;
длина короткого катета=12:2=6 см.