Объяснение:
Первое решение для учителя.
Радиус, проведенный в точку касания перпендикулярен касательной. Поэтому угол ОАС - прямой.
Тогда <OAB = <OBA = <OAC - <BAC = 90°-44°=46°
Второе решение для учителя, который хочет сложностей.
Рисунок у Вас есть, другого не нужно. Здесь особый интерес вызывает угол ВАС. Несмотря на то, что это угол между касательной и хордой, это вписанный угол (некоторые математики называют его вырожденным вписанным углом), который опирается на дугу АВ. Раз так, то угловая мера дуги АВ в два раза больше и равна 2*44 = 88°.
А угол ОАВ это стандартный центральный угол, который равен величине дуги, на которую опирается, то есть угол АОВ = 88°.
Треугольник АОВ - равнобедренный (две стороны ОА и ОВ радиусы), поэтому углы у основания ОАВ и ОВА = (180° - 88°)/2 = 46°
Сначало найдём угол D:
Сумма углов треугольника равна 180°
=> ∠D = 180 - (31 + 69) = 80°
Против большего угла лежит большая сторона.
Против меньшего угла лежит меньшая сторона.
∠D - наибольший угол => СЕ - наибольшая сторона.
∠Е - средний угол => CD - средняя сторона.
∠С - наименьший угол => ED - наименьшая сторона.
1) неверно, так как DE < CD (DE - наименьшая, а CD - средняя)
2) неверно, так как CD < CE (CD - средняя, а СЕ - наибольшая)
3) верно (CE - наибольшая, а DE - наименьшая)
4) неверно, так как DE < CE (DE - наименьшая, а СЕ - наибольшая)
ответ: 3)