По теореме Менелая: (АК/КВ)*(BM/MC)*(CN/NA)=1. ВМ/ВС=1/4 => ВМ/МС = 1/3. AN/CN=3/1 => CN/AN=1/3. Тогда (АК/КВ)*(1/3)*(1/3)=1. АК/КВ = 9/1.
Доказательство теоремы: Проведем через точку C прямую, параллельную AB. Обозначим через Р ее точку пересечения с прямой KN. Треугольники AKN и CPN подобны (< KAN=<PCN, < AKN=<CPN). Следовательно, AK/CP=NA/NC (1). Треугольники BKM и CPM подобны (< BMK=<CMP, < BKM=<CPM). Следовательно, KB/CP=BM/MC (2). Из (1) СР=AK*NC/NA. Из (2) СР=КВ*МС/ВМ. Тогда AK*NC/NA = КВ*МС/ВМ и (AK*NC/NA)/(КВ*МС/ВМ)=1. Или (АК/КВ)*(ВМ/МС)*(NC\NA)=1. Что и требовалось доказать.
Угол ADC=130гр
Угол CAD=180гр-130гр=20гр => угол DAB=20гр
Угол B=180гр-40гр-30гр=110гр