Дан ромб ABCD, в нем S=12 см кв., диагональ AC : BD=5:12. Площадь ромба равна половине произведения диагоналей, т.е. S=1/2AC×BD. По условию - АС=5х, BD=12х. Получаем уравнение : 12=1/2×5х×12х; 12=30х^2 ; х^2=12/30 ;х^2=2/5 ;х=√2/5; х=√10 :5. АС=√10, BD=12√10 :5.Найдем стороны ромба из прямоугольного треугольника АОВ(О - точка пересечения диагоналей), в нем катеты АО=√10/2, ВО=6√10/5, найдем сторону ромба по теореме Пифагора : АВ=√33/5. Периметр ромба Р=4×√33/5.
S = ½d1d2 Имеем ромб ABCD, точка пересечения диагоналей - О. У ромба все стороны равны между собой => 52/4=13 Половина диагонали и сторона (любая на выбор, я взял АВ) образуют прямоугольный треугольник. За теоремой Пифагора АО² + ОВ² = АВ² Подставляем имеющиеся значения: 5² + ОВ² = 13² 25 + ОВ² = 169 ОВ² = 169 - 25 ОВ² = 144 ОВ = √144 ОВ = 12 Отлично. Найденный нами катет является еще и половиной второй диагонали, которую мы искали. То есть, целая диагональ равна DB= 12•2=24 А теперь... S = ½d1d2 = ½AC•DB = ½ • 10 • 24 = 120 см.
В равнобедренном треугольнике АВС АВ=ВС, R=ВО1=25 см, r=МО2=12 см. С заданными параметрами R и r можно построить два равнобедренных тр-ка, в одном из которых угол при вершине будет меньше шестидесяти градусов, а в другом - больше. Действительно, только в равностороннем треугольнике центры вписанной и описанной окружностей совпадают, а в нашем, равнобедренном треугольнике, они расположены отдельно, и лежат на высоте, проведённой к основанию. Для обоих треугольников расстояние между центрами вписанной и описанной окружности можно вычислить по формуле Эйлера: d²=R²-2Rr, где d=О1О2. d²=25²-2·25·12=25, d=5 см. Пусть АС=а, АВ=ВС=b. Из формулы S=abc/2R имеем при а=b: S=b²с/2R ⇒ b²=2RS/c. Также S=ch/2, значит b²=2Rch/(2c)=2Rh. Рассмотрим два варианта отдельно. 1) ∠В<60°, тогда h>R+r. h=ВМ=ВО1+О1О2+МО2=R+d+r=25+5+12=42. b²=2·25·42=2100, b=10√21 см. В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(2100-42²)=√336=4√21. Периметр АВС: Р=2(АВ+АМ)=2(10√21+4√21)=28√21 см - это ответ. 2) ∠В>60°, тогда h<R+r. Так как d<r или О1О2<МО2, то центр описанной окружности лежит внутри треугольника АВС. h=ВМ=ВО1+МО2-О1О2=R+r-d=25+12-5=32 cм. b²=2·25·32=1600, b=40 см. В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(40²-32²)=24 см. Периметр АВС=2(АВ+АМ)=2(40+24)=128 см - это ответ.