В1: с=5, a=3 По теореме Пифагора c2=a2+b2 откуда b2=c2-a2=25-9=16 или b=4 Периметр Р=3+4+5=12 В2: S=1/2a*b=1/2*3*4=6 B3: sin=b/c=4/5=0,8 В4: центр вписанной окружности лежит на пересечении биссектрис треугольника. R=1 B5: Медиана будет равна половине гипотенузы, поскольку получается равнобедренный треугольник. В6: S1=1/2a*h1=1/2*3*2=3 S2=1/2b*h2=1/2*4*1,5=3 B7: синус угла, которого мы уже искали в В3 равен 0,8. Тогда в треугольнике с высотой h тот же угол: sin=h/a, откуда h=sin*a=0,8*3=2,4. В8: обозначим основание меньшего треугольника х, большего – у. высота у них h. Рассмотрим подобие треугольников abc и axh (подобны по двум углам и стороне а между ними). Отношение x/a=h/b, откуда x=h/b*a=2,4/4*3=1,8 Площадь меньшего меньшего треугольника: S=1/2x*h=1/2*1,8*2,4=2,16 Рассмотрим подобие треугольников abc и byh (подобны по двум углам и стороне а между ними). Отношение h/a=y/b, откуда y=h/a*b=2,4/3*4=3,2 Площадь большего треугольника: S=1/2y*h=1/2*3,2*2,4=3,84
Вся окружность составляет 360 градусов 3 угла между радиусами,. проведенными к основаниям относятся как 2:3:4. Значит: 2х+3х+4х=360 9х=360 х=40 Мы узнали коэффициент соотношения, теперь вычислим сами углы. Они будут 2х 3х и 4х 80 градусов 120 градусов и 160 градусов. Рассмотрим любой из треугольников образованных: 1. Радиусом, уже проведенным к точке касания 2. Отрезком от середины окружности до любой вершины. 3. Отрезком (часть стороны) от точки касания до вершины.
В этом треугольнике угол между радиусом и касательной будет равен 90 градусов, т.к. радиус проведенный к касательной всегда ей перпендикулярен. Угол этого треугольника у центра О будет равен половине найденного нами из соотношения (2:3:4). Пусть например это будет половина угла 80 градусов, т.е. 40 градусов. Тогда получается, что мы рассматриваем треугольник у которого один угол 90 градусов, другой 40, третей будет 180-90-40=50 градусов. Это будет половина угла при вершине большого треугольника. Весь угол будет 100 градусов.
Аналогично находим угол при второй вершине: 180-60-90=30. -- половина угла 30*2=60 --- угол при второй вершине.
Угол при третьей вершине будет 180-60-100=20 градусов.