Рассмотрим боковую грань, апофема разбивает ее на два прямоугольных треугольника с одним из катетов L и острым углом a/2. Тогда другой катет будет равен L*tg(a/2). Этот катет равен половине стороны основания, тогда сторона квадрата в основании равна 2L*tg(a/2), и площадь основания равна 4L^2*tg^2(a/2). Площадь боковой грани равна половине произведения основания этой грани на высоту, то есть Sгр=L^2*tg(a/2). Тогда Sбок=4Sгр=4L^2*tg(a/2). Sполн=Sосн+Sбок=4L^2*tg^2(a/2)+4L^2*tg(a/2)=4L^2tg(a/2)(1+tg^2(a/2))
24=24/2*r r=24/12=2
связь между радиусом вписанной окр. и описанной окр. r=Rcos(180/3) 2=R*COS60=R*1/2 R=4
если окр. описана около прямоугольного треуг. то гипотенуза является диаметром и АВ=8 ПОЛУЧАЕТСЯ У МЕНЯ АВ=2R=8