В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
1.Один из смежных углов х°, другой (х+32)°Сумма смежных углов 180°х+(х+32)=1802х+32=1802х=180-322х=148х=7474+32=106ответ.74°; 106° 2. см. рисунок Вертикальные углы равны между собой. Один угол х° и второй тоже х° х+х=146 2х=146 х=73° Два смежных с ними 180°-73=107° ответ 73°;107°73°107°
3. см. рисунок х+х+180-х=202 х=202-180 х=22 ответ. 22°; 158°;22°
4. см. рисунок Один из данных углов х, второй 2х х:2х=1:2 Смежный с первым 5у, смежный со вторым 4у, 5у:4у=5:4 Сумма смежных углов 180° х+5у=180 ⇒ х=180-5у 2х+4у=180 ⇒ 2·(180-5у)+4у=180; 360-10у+4у=180; 6у=180 у=30°
5у=150° 4у=120° х=180°-150°=30° 2х=60° ответ. один угол 30°, второй угол 60° 30:60=1:2 смежный с первым 150° смежный со вторым 120° 150°:120°=5:4
DB1 - диагональ параллелопипеда
Диагональ основания BD=√(AB²+BC²)=√(1+8²)=√65
BB1=CC1
DB1 = √(BD²+ BB1²) = √(65 + 4²) = √81 = 9
DB1 - диагональ параллелопипеда = 9
ответ:9