ответ: 64 см.
Объяснение: Малая диагональ делит ромб с углами A/B/C/D на 2 треугольника с противоположными углами 60°. Обозначим их A и C. Вычтя из 360°- 60°- 60°= 240° получим сумму 2-х других углов B и D. Поделив 240°/ 2 = 120° находим величину B и D второй пары противоположных углов. Малая диагональ является биссектрисой углов B и D и делит их пополам - 120°/ 2 = 60°. Отсюда все углы треугольников ABD и CDB равны 60°. Диагональ DB является общей стороной равносторонних треугольников ABD и CDB и равна 16 см Значит все стороны ромба равны 16 см. Периметр равен 16 × 4 = 64 см.
Док-во:
1)треугольник АВС-равнобедренный (по условию), значит АВ=ВС(по определению равнобедренного треугольника), АЕ=СФ(по условию), значит ВЕ=ВФ. ВД-общая сторона, ВД-является также биссектрисой угла В (по св-ву равнобедренного треугольника), значит угол ЕВД= углу ДВФ, следовательно треугольник ЕВД= треугольнику ДВФ ( по 1 признаку,т.е. по двум сторонам и углу м/у ними).
2)т.к. треугольник АВС-равнобедренный (по условию), то угол А= углу С ( по св-ву равнобедренного треугольника, что углы при основании равны), АЕ=ФС (по условию), АД=ДС (т.к. ВД-медиана), следовательно треугольник АЕД=ДСФ(по 1 признаку).