Сумма двух различных сторон параллелограмма равна половине его периметра, так как противоположные стороны равны между собой. АВ+ВС=2,8/2=1,4 см; всего 3+4=7 частей; 1,4/7=0,2 см - одна часть; АВ=ВД=0,2*3=0,6 см; ВС=АД=0,2*4=0,8 см.
Проведем СЕ параллельно диагонали ВD. Треугольник АСЕ - прямоугольный, так как его стороны связаны соотношением 5:12:13, то есть с²=a²+b². Высота, опущенная на гипотенузу, связана с катетами прямоугольного треугольника соотношением: 1/a²+1/b²=1/h² или h²=a²*b²/(a²+b²) или h²=a²*b²/с². Или h=a*b/c. В нашем случае h=10*24/26=120/13. Тогда площадь трапеции равна S=(4+22)*120/2*13=120cм². ответ:S=120cм².
P.S. Заметим, что площадь трапеции S=(BC+AD)*h/2 равна площади прямоугольного треугольника АСЕ, так как высота у них одинакова, а основание (гипотенуза) треугольника равна сумме оснований трапеции: Sace=AE*h/2=(BC+AD)*h/2. Таким образом, можно было не находить высоту трапеции, а площадь ее найти как половину произведения диагоналей трапеции (катетов треугольника), то есть S=AC*BD/2=10*24/2=120см². Или найти площадь треугольника АСЕ (равную площади трапеции ABCD) по формуле Герона (для любителей корней): S=√[p(p-a)(p-b)(p-c)]=√(30*20*6*4)=120см².
АВ+ВС=2,8/2=1,4 см;
всего 3+4=7 частей;
1,4/7=0,2 см - одна часть;
АВ=ВД=0,2*3=0,6 см;
ВС=АД=0,2*4=0,8 см.