Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
108 см^2.
Объяснение:
Диагональ параллилепипеда - А1С.
1. Рассм. треуг. АА1С1 : угол А=90 градусов, угол С=45 градусов => треуг. АА1С- равнобедренный и прямоугольный => АА1=АС=а. Из теоремы Пифагора найдем а:
АА1=АС=15 см.
2. Пусть площадь АА1D1D=180 см^2 (это же боковая грань). Тогда отсюда, зная, что АА1=15 см, найдем АD: 180÷15=12 см.
3. Рассм. треуг. ADC: угол D=90 градусов, АС=15 см, АD=12 см. Из т. Пифагора найдем DC:
4. Sоснования=DC×AD=9×12=108 см^2.