Мы знаем,что у треугольника 3 стороны, значит чтобы найти периметр,нужно их сложить.
P∆=a+b+c.
Чтобы найти периметр, нужно знать его все стороны.
Пусть x будет коэффициент, значит 6х,5х,4х} стороны треугольника. P=75см.
По условию задачи составим и решим уравнение:
6х+5х+4х=75см.
15х=75см.
х=75:15
х=5
Мы узнали сколько будет x, тогда узнаем все остальные его стороны.
|ст.=6х=6•5=30см.
||ст.=5х=5•5=25см.
|||ст.=4х=4•5=20см.
ПРОВЕРКА:
30 СМ + 25 СМ + 20 СМ=75 СМ.
75см.=75см.
ответ: |ст.=30см.;
||ст.=25см.;
|||ст.=20см.
ΔABC: ∠АВС = 90°, по теореме Пифагора
ВС = √(АС² - АВ²) = √(625 - 576) = √49 = 7 см
Sabcd = AB·BC = 24 · 7 = 168 cм²
А2.
∠С = 90°, ∠B = 60°, ⇒ ∠A = 30°.
CB = AB/2 = 40/2 = 20 см как катет, лежащий напротив угла в 30°.
По теореме Пифагора
АС = √(АВ² - СВ²) = √(1600 - 400) = √1200 = 20√3 см
Sabc = 1/2 · AC · BC = 1/2 · 20√3 · 20 = 200√3 см²
А3.
Sabcd = AC · BD /2 = 14 · 6 / 2 = 42 см²
А4.
КН = 16 см - высота трапеции.
ΔABD = ΔDCA по двум сторонам и углу между ними (AB = CD так как трапеция равнобедренная, AD - общая, ∠BAD = ∠CDA как углы при основании равнобедренной трапеции), ⇒
∠CAD = ∠BDA, ⇒ AO = OD.
ΔAOD равнобедренный прямоугольный, значит ОН - высота и медиана.
ОН = AD/2 так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
Аналогично, ОК = ВС/2.
КН = КО + ОН = AD/2 + BC/2 = (AD + BC)/2 = 16 см ⇒
Sabcd = (AD + BC)/2 · KH = 16 ·16 = 256 см²
Вообще, в равнобедренной трапеции с перпендикулярными диагоналями высота равна ее средней линии.
В1. Пусть К и М - середины оснований.
Обозначим АМ = MD = a, BK = KC = b.
ABKM и MKCD - трапеции, имеющие общую высоту КН = h.
Sabkm = (a + b)/2 ·h
Smkcd = (a + b)/2 ·h, ⇒
Sabkm = Smkcd