Центр шара лежит в точке, равноудалённой от сторон треугольника, образуя вместе с вершинами треугольника треугольную пирамиду с равными апофемами. апофемы равны, значит основание высоты пирамиды лежит в центре вписанной в основание пирамиды окружности. площадь основания можно вычислить по формуле герона: s=√(p(p-a)(p-b)(p- где р=(a+b+c)/2. подставив числовые значения a=13, b=14 и с=15 получим s=84 см. радиус вписанной окружности: r=s/p=2s/(a+b+c). r=2·84/(13+14+15)=4 см. высота пирамиды, проведённая к данному треугольнику - это расстояние от центра шара до треугольника. в прямоугольном треугольнике, образованном высотой пирамиды, апофемой и найденным радиусом, высота по теореме пифагора равна: h=√(l²-r²), где l- апофема пирамиды (равна радиусу шара). h=√(5²-4²)=3 см - это ответ.
Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12